Abstract
Long paths and cycles in sparse random graphs and digraphs were studied intensively in the 1980's. It was finally shown by Frieze in 1986 that the random graph \documentclass{article}\usepackage{mathrsfs, amsmath, amssymb}\pagestyle{empty}\begin{document}${\mathcal{G}}(n,p)$\end{document} with p = c/n has a cycle on at all but at most (1 + ε)ce-cn vertices with high probability, where ε = ε (c) → 0 as c → ∞. This estimate on the number of uncovered vertices is essentially tight due to vertices of degree 1. However, for the random digraph \documentclass{article}\usepackage{mathrsfs, amsmath, amssymb}\pagestyle{empty}\begin{document}${\mathcal{D}}(n,p)$\end{document} no tight result was known and the best estimate was a factor of c/2 away from the corresponding lower bound. In this work we close this gap and show that the random digraph \documentclass{article}\usepackage{mathrsfs, amsmath, amssymb}\pagestyle{empty}\begin{document}${\mathcal{D}}(n,p)$\end{document} with p = c/n has a cycle containing all but (2 + ε)e-cn vertices w.h.p., where ε = ε (c) → 0 as c → ∞. This is essentially tight since w.h.p. such a random digraph contains (2e-c - o(1))n vertices with zero in-degree or out-degree.
Original language | English (US) |
---|---|
Pages (from-to) | 1-15 |
Number of pages | 15 |
Journal | Random Structures and Algorithms |
Volume | 43 |
Issue number | 1 |
DOIs | |
State | Published - Aug 2013 |
Keywords
- Cycles
- Directed graphs
- Random graphs
ASJC Scopus subject areas
- Software
- General Mathematics
- Computer Graphics and Computer-Aided Design
- Applied Mathematics