TY - GEN
T1 - Loss functions for discriminative training of energy-based models
AU - Cun, Yann Le
AU - Huang, Fu Jie
PY - 2005
Y1 - 2005
N2 - Probabilistic graphical models associate a probability to each configuration of the relevant variables. Energy-based models (EBM) associate an energy to those configurations, eliminating the need for proper normalization of probability distributions. Making a decision (an inference) with an EBM consists in comparing the energies associated with various configurations of the variable to be predicted, and choosing the one with the smallest energy. Such systems must be trained discriminatively to associate low energies to the desired configurations and higher energies to un-desired configurations. A wide variety of loss function can be used for this purpose. We give sufficient conditions that a loss function should satisfy so that its minimization will cause the system to approach to desired behavior. We give many specific examples of suitable loss functions, and show an application to object recognition in images.
AB - Probabilistic graphical models associate a probability to each configuration of the relevant variables. Energy-based models (EBM) associate an energy to those configurations, eliminating the need for proper normalization of probability distributions. Making a decision (an inference) with an EBM consists in comparing the energies associated with various configurations of the variable to be predicted, and choosing the one with the smallest energy. Such systems must be trained discriminatively to associate low energies to the desired configurations and higher energies to un-desired configurations. A wide variety of loss function can be used for this purpose. We give sufficient conditions that a loss function should satisfy so that its minimization will cause the system to approach to desired behavior. We give many specific examples of suitable loss functions, and show an application to object recognition in images.
UR - http://www.scopus.com/inward/record.url?scp=84862617580&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84862617580&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84862617580
SN - 097273581X
SN - 9780972735810
T3 - AISTATS 2005 - Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics
SP - 206
EP - 213
BT - AISTATS 2005 - Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics
T2 - 10th International Workshop on Artificial Intelligence and Statistics, AISTATS 2005
Y2 - 6 January 2005 through 8 January 2005
ER -