Abstract
We formulate low Mach number fluctuating hydrodynamic equations appropriate for modeling diffusive mixing in isothermal mixtures of fluids with different density and transport coefficients. These equations represent a coarse-graining of the microscopic dynamics of the fluid molecules in both space and time and eliminate the fluctuations in pressure associated with the propagation of sound waves by replacing the equation of state with a local thermodynamic constraint. We demonstrate that the low Mach number model preserves the spatiotemporal spectrum of the slower diffusive fluctuations. We develop a strictly conservative finite-volume spatial discretization of the low Mach number fluctuating equations in both two and three dimensions and construct several explicit Runge-Kutta temporal integrators that strictly maintain the equation-of-state constraint. The resulting spatiotemporal discretization is second-order accurate deterministically and maintains fluctuation-dissipation balance in the linearized stochastic equations. We apply our algorithms to model the development of giant concentration fluctuations in the presence of concentration gradients and investigate the validity of common simplifications such as neglecting the spatial nonhomogeneity of density and transport properties. We perform simulations of diffusive mixing of two fluids of different densities in two dimensions and compare the results of low Mach number continuum simulations to hard-disk molecular-dynamics simulations. Excellent agreement is observed between the particle and continuum simulations of giant fluctuations during time-dependent diffusive mixing.
Original language | English (US) |
---|---|
Pages (from-to) | 47-105 |
Number of pages | 59 |
Journal | Communications in Applied Mathematics and Computational Science |
Volume | 9 |
Issue number | 1 |
DOIs | |
State | Published - 2014 |
Keywords
- Fluctuating hydrodynamics
- Giant fluctuations
- Low mach expansion
- Molecular dynamics
ASJC Scopus subject areas
- Computer Science Applications
- Computational Theory and Mathematics
- Applied Mathematics