Low-Precision Arithmetic for Fast Gaussian Processes

Wesley J. Maddox, Andres Potapczynski, Andrew Gordon Wilson

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Low-precision arithmetic has had a transformative effect on the training of neural networks, reducing computation, memory and energy requirements. However, despite its promise, low-precision arithmetic has received little attention for Gaussian process (GP) training, largely because GPs require sophisticated linear algebra routines that are unstable in low-precision. We study the different failure modes that can occur when training GPs in half precision. To circumvent these failure modes, we propose a multi-faceted approach involving conjugate gradients with re-orthogonalization, mixed precision, and preconditioning. Our approach significantly improves the numerical stability and practical performance of conjugate gradients in low-precision over a wide range of settings, enabling GPs to train on 1.8 million data points in 10 hours on a single GPU, without requiring any sparse approximations.

Original languageEnglish (US)
Title of host publicationProceedings of the 38th Conference on Uncertainty in Artificial Intelligence, UAI 2022
PublisherAssociation For Uncertainty in Artificial Intelligence (AUAI)
Pages1306-1316
Number of pages11
ISBN (Electronic)9781713863298
StatePublished - 2022
Event38th Conference on Uncertainty in Artificial Intelligence, UAI 2022 - Eindhoven, Netherlands
Duration: Aug 1 2022Aug 5 2022

Publication series

NameProceedings of the 38th Conference on Uncertainty in Artificial Intelligence, UAI 2022

Conference

Conference38th Conference on Uncertainty in Artificial Intelligence, UAI 2022
Country/TerritoryNetherlands
CityEindhoven
Period8/1/228/5/22

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Low-Precision Arithmetic for Fast Gaussian Processes'. Together they form a unique fingerprint.

Cite this