TY - GEN
T1 - lpSpikeCon
T2 - 2022 International Joint Conference on Neural Networks, IJCNN 2022
AU - Wicaksana Putra, Rachmad Vidya
AU - Shafique, Muhammad
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - Recent advances have shown that Spiking Neural Network (SNN)-based systems can efficiently perform unsuper-vised continual learning due to their bio-plausible learning rule, e.g., Spike-Timing-Dependent Plasticity (STDP). Such learning capabilities are especially beneficial for use cases like autonomous agents (e.g., robots and UAVs) that need to continuously adapt to dynamically changing scenarios/environments, where new data gathered directly from the environment may have novel features that should be learned online. Current state-of-the-art works employ high-precision weights (i.e., 32 bit) for both training and inference phases, which pose high memory and energy costs thereby hindering efficient embedded implementations of such systems for battery-driven mobile autonomous systems. On the other hand, precision reduction may jeopardize the quality of unsupervised continual learning due to information loss. Towards this, we propose lpSpikeCon, a novel methodology to enable low-precision SNN processing for efficient unsupervised continual learning on resource-constrained autonomous agents/systems. Our lpSpikeCon methodology employs the following key steps: (1) analyzing the impacts of training the SNN model under unsuper-vised continual learning settings with reduced weight precision on the inference accuracy; (2) leveraging this study to identify SNN parameters that have a significant impact on the inference accuracy; and (3) developing an algorithm for searching the respective SNN parameter values that improve the quality of unsupervised continual learning. The experimental results show that our lpSpikeCon can reduce weight memory of the SNN model by 8x (i.e., by judiciously employing 4-bit weights) for performing online training with unsupervised continual learning and achieve no accuracy loss in the inference phase, as compared to the baseline model with 32-bit weights across different network sizes.
AB - Recent advances have shown that Spiking Neural Network (SNN)-based systems can efficiently perform unsuper-vised continual learning due to their bio-plausible learning rule, e.g., Spike-Timing-Dependent Plasticity (STDP). Such learning capabilities are especially beneficial for use cases like autonomous agents (e.g., robots and UAVs) that need to continuously adapt to dynamically changing scenarios/environments, where new data gathered directly from the environment may have novel features that should be learned online. Current state-of-the-art works employ high-precision weights (i.e., 32 bit) for both training and inference phases, which pose high memory and energy costs thereby hindering efficient embedded implementations of such systems for battery-driven mobile autonomous systems. On the other hand, precision reduction may jeopardize the quality of unsupervised continual learning due to information loss. Towards this, we propose lpSpikeCon, a novel methodology to enable low-precision SNN processing for efficient unsupervised continual learning on resource-constrained autonomous agents/systems. Our lpSpikeCon methodology employs the following key steps: (1) analyzing the impacts of training the SNN model under unsuper-vised continual learning settings with reduced weight precision on the inference accuracy; (2) leveraging this study to identify SNN parameters that have a significant impact on the inference accuracy; and (3) developing an algorithm for searching the respective SNN parameter values that improve the quality of unsupervised continual learning. The experimental results show that our lpSpikeCon can reduce weight memory of the SNN model by 8x (i.e., by judiciously employing 4-bit weights) for performing online training with unsupervised continual learning and achieve no accuracy loss in the inference phase, as compared to the baseline model with 32-bit weights across different network sizes.
KW - SNNs
KW - Spiking neural networks
KW - autonomous agents
KW - continual learning
KW - embedded systems
KW - energy efficiency
KW - memory efficiency
KW - unsupervised learning
UR - http://www.scopus.com/inward/record.url?scp=85140726697&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85140726697&partnerID=8YFLogxK
U2 - 10.1109/IJCNN55064.2022.9892948
DO - 10.1109/IJCNN55064.2022.9892948
M3 - Conference contribution
AN - SCOPUS:85140726697
T3 - Proceedings of the International Joint Conference on Neural Networks
BT - 2022 International Joint Conference on Neural Networks, IJCNN 2022 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 18 July 2022 through 23 July 2022
ER -