M4GT-Bench: Evaluation Benchmark for Black-Box Machine-Generated Text Detection

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan Su, Artem Shelmanov, Akim Tsvigun, Osama Mohammed Afzal, Tarek Mahmoud, Giovanni Puccetti, Thomas Arnold, Alham Fikri Aji, Nizar Habash, Iryna Gurevych, Preslav Nakov

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The advent of Large Language Models (LLMs) has brought an unprecedented surge in machine-generated text (MGT) across diverse channels. This raises legitimate concerns about its potential misuse and societal implications. The need to identify and differentiate such content from genuine human-generated text is critical in combating disinformation, preserving the integrity of education and scientific fields, and maintaining trust in communication. In this work, we address this problem by introducing a new benchmark based on a multilingual, multi-domain, and multi-generator corpus of MGTs - M4GT-Bench. The benchmark is compiled of three tasks: (1) mono-lingual and multi-lingual binary MGT detection; (2) multi-way detection where one need to identify, which particular model generated the text; and (3) mixed human-machine text detection, where a word boundary delimiting MGT from human-written content should be determined. On the developed benchmark, we have tested several MGT detection baselines and also conducted an evaluation of human performance. We see that obtaining good performance in MGT detection usually requires an access to the training data from the same domain and generators. The benchmark is available at https://github.com/mbzuai-nlp/M4GT-Bench.

Original languageEnglish (US)
Title of host publicationLong Papers
EditorsLun-Wei Ku, Andre F. T. Martins, Vivek Srikumar
PublisherAssociation for Computational Linguistics (ACL)
Pages3964-3992
Number of pages29
ISBN (Electronic)9798891760943
DOIs
StatePublished - 2024
Event62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Bangkok, Thailand
Duration: Aug 11 2024Aug 16 2024

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
Volume1
ISSN (Print)0736-587X

Conference

Conference62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024
Country/TerritoryThailand
CityBangkok
Period8/11/248/16/24

ASJC Scopus subject areas

  • Computer Science Applications
  • Linguistics and Language
  • Language and Linguistics

Fingerprint

Dive into the research topics of 'M4GT-Bench: Evaluation Benchmark for Black-Box Machine-Generated Text Detection'. Together they form a unique fingerprint.

Cite this