Macroscopic approximation of a Fermi-Dirac statistics: Unbounded velocity space setting

Nader Masmoudi, Mohamed Lazhar Tayeb

Research output: Contribution to journalArticlepeer-review

Abstract

An approximation by diffusion of a nonlinear Boltzmann equation modeling a Fermi-Dirac statistics is analyzed for an unbounded velocity space and Poisson coupling. A careful analysis of the entropy and entropy-dissipation allows to control the distribution function and to pass to the limit using duality method.

Original languageEnglish (US)
Pages (from-to)42-70
Number of pages29
JournalJournal des Mathematiques Pures et Appliquees
Volume158
DOIs
StatePublished - Feb 2022

Keywords

  • Boltzmann-Poisson
  • Entropy-dissipation
  • Fermi-Dirac statistics
  • Hydrodynamic limit
  • Quantum effects
  • Semiconductors

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Macroscopic approximation of a Fermi-Dirac statistics: Unbounded velocity space setting'. Together they form a unique fingerprint.

Cite this