Abstract
We investigate the impact of toroidal rotation on axisymmetric MHD equilibria analytically and numerically, with a focus on the change of the safety factor and magnetic shear induced by the flow. When the toroidal rotation is radially localized by an external momentum source, the pressure due to the flow can change the magnetic configuration and the safety factor significantly, even for subsonic flows. Specifically, when the radial profile of the safety factor is not conserved throughout a discharge, toroidal flow can lead to magnetic shear reversal for the equilibrium magnetic field, and we find that the magnitude of the negative shear is amplified for cross sections with large negative triangularity. This has implications for both magnetohydrodynamic stability and anomalous transport. Furthermore, even when the magnetic flux is conserved and the radial magnetic shear profile does not change, the toroidal flow can modify the local magnetic shear. The poloidal variations of the local magnetic shear due to the flow can stabilize magnetohydrodynamic ballooning modes.
Original language | English (US) |
---|---|
Article number | 105007 |
Journal | Plasma Physics and Controlled Fusion |
Volume | 61 |
Issue number | 10 |
DOIs | |
State | Published - Sep 4 2019 |
Keywords
- MHD equilibrium
- magnetic shear
- plasma equilibrium shape
- tokamak
- toroidal rotation
ASJC Scopus subject areas
- Nuclear Energy and Engineering
- Condensed Matter Physics
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Magnetic shear due to localized toroidal flow shear in tokamaks'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: Plasma Physics and Controlled Fusion, Vol. 61, No. 10, 105007, 04.09.2019.
Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Magnetic shear due to localized toroidal flow shear in tokamaks
AU - Lee, Jungpyo
AU - Cerfon, Antoine
N1 - Funding Information: Jungpyo Lee Antoine Cerfon Jungpyo Lee Antoine Cerfon Hanyang University, Nuclear Engineering Department, Seoul, Republic of Korea MIT Plasma Science and Fusion Center, Cambridge, MA, United States of America Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, United States of America Jungpyo Lee and Antoine Cerfon 2019-10-01 2019-09-03 13:37:59 cgi/release: Article released bin/incoming: New from .zip Fund by National Fusion Research Institute (NFRI) of Korea R&D program of "Development of ITER non-procurement key technologies (INI904-2)" U.S. Department of Energy, Office of Science, Fusion Energy Sciences DE-FG02-86ER53223 DE-SC0012398 yes We investigate the impact of toroidal rotation on axisymmetric MHD equilibria analytically and numerically, with a focus on the change of the safety factor and magnetic shear induced by the flow. When the toroidal rotation is radially localized by an external momentum source, the pressure due to the flow can change the magnetic configuration and the safety factor significantly, even for subsonic flows. Specifically, when the radial profile of the safety factor is not conserved throughout a discharge, toroidal flow can lead to magnetic shear reversal for the equilibrium magnetic field, and we find that the magnitude of the negative shear is amplified for cross sections with large negative triangularity. This has implications for both magnetohydrodynamic stability and anomalous transport. Furthermore, even when the magnetic flux is conserved and the radial magnetic shear profile does not change, the toroidal flow can modify the local magnetic shear. The poloidal variations of the local magnetic shear due to the flow can stabilize magnetohydrodynamic ballooning modes. � 2019 IOP Publishing Ltd [1] Lao L L et al (the DIIID Team) 1996 Phys. Plasmas 3 1951 10.1063/1.871991 Lao L L et al (the DIIID Team) Phys. Plasmas 1070-664X 3 1996 1951 [2] Menard J E et al (the NSTX Research Team) 2005 Nucl. Fusion 45 539 10.1088/0029-5515/45/7/001 Menard J E et al (the NSTX Research Team) Nucl. Fusion 0029-5515 45 7 001 2005 539 [3] Counsell G F et al 2005 Nucl. Fusion 45 S157 10.1088/0029-5515/45/10/S13 Counsell G F et al Nucl. Fusion 0029-5515 45 10 S13 2005 S157 [4] Akers R J et al (MAST, and NBI Team) 2003 Plasma Phys. Control. Fusion 45 A175 10.1088/0741-3335/45/12A/013 Akers R J et al (MAST, and NBI Team) Plasma Phys. Control. Fusion 0741-3335 45 12A 013 2003 A175 [5] de Vries P, Hua M, McDonald D, Giroud C, Janvier M, Johnson M, Tala T and Zastrow K 2008 Nucl. Fusion 48 065006 10.1088/0029-5515/48/6/065006 de Vries P, Hua M, McDonald D, Giroud C, Janvier M, Johnson M, Tala T and Zastrow K Nucl. Fusion 0029-5515 48 6 065006 2008 [6] Kaye S, Solomon W, Bell R, LeBlanc B, Levinton F, Menard J, Rewoldt G, Sabbagh S, Wang W and Yuh H 2009 Nucl. Fusion 49 045010 10.1088/0029-5515/49/4/045010 Kaye S, Solomon W, Bell R, LeBlanc B, Levinton F, Menard J, Rewoldt G, Sabbagh S, Wang W and Yuh H Nucl. Fusion 0029-5515 49 4 045010 2009 [7] Guazzotto L and Betti R 2015 Phys. Plasmas 22 092503 10.1063/1.4929854 Guazzotto L and Betti R Phys. Plasmas 22 092503 2015 [8] Politzer P A et al 2008 Nucl. Fusion 48 075001 10.1088/0029-5515/48/7/075001 Politzer P A et al Nucl. Fusion 0029-5515 48 7 075001 2008 [9] Helander P, Akers R J and Eriksson L-G 2005 Phys. Plasmas 12 112503 10.1063/1.2121287 Helander P, Akers R J and Eriksson L-G Phys. Plasmas 12 112503 2005 [10] Chan V S, Chiu S C, Lin-Liu Y R and Omelchenko Y A 1999 Proc. 13th Int. Conf. on Radio Frequency Power in Plasmas vol 485 p 45 Chan V S, Chiu S C, Lin-Liu Y R and Omelchenko Y A Proc. 13th Int. Conf. on Radio Frequency Power in Plasmas 485 1999 45 [11] Mattioli M, Ramette J, Saoutic B, Denne B, Källne E, Bombarda F and Giannella R 1988 J. Appl. Phys. 64 3345 10.1063/1.341516 Mattioli M, Ramette J, Saoutic B, Denne B, Källne E, Bombarda F and Giannella R J. Appl. Phys. 64 1988 3345 [12] Rice J E, Greenwald M, Hutchinson I H, Marmar E S, Takase Y, Wolfe S M and Bombarda F 1998 Nucl. Fusion 38 75 10.1088/0029-5515/38/1/306 Rice J E, Greenwald M, Hutchinson I H, Marmar E S, Takase Y, Wolfe S M and Bombarda F Nucl. Fusion 0029-5515 38 1 306 1998 75 [13] Rice J E et al 2007 Nucl. Fusion 47 11 10.1088/0029-5515/47/11/025 Rice J E et al Nucl. Fusion 0029-5515 47 11 025 2007 11 [14] Parra F I and Catto P J 2010 Plasma Phys. Control. Fusion 52 045004 10.1088/0741-3335/52/4/045004 Parra F I and Catto P J Plasma Phys. Control. Fusion 0741-3335 52 4 045004 2010 [15] Parra F I, Barnes M and Catto P J 2011 Nucl. Fusion 51 113001 10.1088/0029-5515/51/11/113001 Parra F I, Barnes M and Catto P J Nucl. Fusion 0029-5515 51 11 113001 2011 [16] Bondeson A and Ward D J 1994 Phys. Rev. Lett. 72 2709 10.1103/PhysRevLett.72.2709 Bondeson A and Ward D J Phys. Rev. Lett. 0031-9007 72 1994 2709 [17] Strait E J, Taylor T S, Turnbull A D, Ferron J R, Lao L L, Rice B, Sauter O, Thompson S J and Wróblewski D 1995 Phys. Rev. Lett. 74 2483 10.1103/PhysRevLett.74.2483 Strait E J, Taylor T S, Turnbull A D, Ferron J R, Lao L L, Rice B, Sauter O, Thompson S J and Wróblewski D Phys. Rev. Lett. 74 1995 2483 [18] Sontag A C et al 2005 Phys. Plasmas 12 056112 10.1063/1.1883668 Sontag A C et al Phys. Plasmas 12 056112 2005 [19] Waelbroeck F L 1996 Phys. Plasmas 3 1047 10.1063/1.871760 Waelbroeck F L Phys. Plasmas 1070-664X 3 1996 1047 [20] Wahlberg C and Bondeson A 2000 Phys. Plasmas 7 923 10.1063/1.873889 Wahlberg C and Bondeson A Phys. Plasmas 7 2000 923 [21] Chapman I T, Graves J P, Wahlberg C (the MAST Team) 2010 Nucl. Fusion 50 025018 10.1088/0029-5515/50/2/025018 Chapman I T, Graves J P, Wahlberg C (the MAST Team) Nucl. Fusion 0029-5515 50 2 025018 2010 [22] Wahlberg C and Bondeson A 2001 Phys. Plasmas 8 3595 10.1063/1.1380234 Wahlberg C and Bondeson A Phys. Plasmas 8 2001 3595 [23] Hameiri E and Chun S-T 1990 Phys. Rev. A 41 1186 10.1103/PhysRevA.41.1186 Hameiri E and Chun S-T Phys. Rev. 41 A 1990 1186 [24] Wilson H R 1993 Plasma Phys. Control. Fusion 34 885 10.1088/0741-3335/35/7/007 Wilson H R Plasma Phys. Control. Fusion 0741-3335 34 1993 885 [25] Miller R L, Waelbroeck F L, Hassam A B and Waltz R E 1995 Phys. Plasmas 2 10 10.1063/1.871067 Miller R L, Waelbroeck F L, Hassam A B and Waltz R E Phys. Plasmas 1070-664X 2 1995 10 [26] Furukawa M and Tokuda S 2005 Phys. Rev. Lett. 94 175001 10.1103/PhysRevLett.94.175001 Furukawa M and Tokuda S Phys. Rev. Lett. 94 175001 2005 [27] Parra F I, Barnes M, Highcock E G, Schekochihin A A and Cowley S C 2011 Phys. Rev. Lett. 106 115004 10.1103/PhysRevLett.106.115004 Parra F I, Barnes M, Highcock E G, Schekochihin A A and Cowley S C Phys. Rev. Lett. 106 115004 2011 [28] Burrell K H 1999 Phys. Plasmas 6 4418 10.1063/1.873728 Burrell K H Phys. Plasmas 6 1999 4418 [29] Barnes M, Parra F I, Highcock E G, Schekochihin A A, Cowley S C and Roach C M 2011 Phys. Rev. Lett. 106 175004 10.1103/PhysRevLett.106.175004 Barnes M, Parra F I, Highcock E G, Schekochihin A A, Cowley S C and Roach C M Phys. Rev. Lett. 106 175004 2011 [30] Highcock E G, Barnes M, Schekochihin A A, Parra F I, Roach C M and Cowley S C 2010 Phys. Rev. Lett. 105 215003 10.1103/PhysRevLett.105.215003 Highcock E G, Barnes M, Schekochihin A A, Parra F I, Roach C M and Cowley S C Phys. Rev. Lett. 105 215003 2010 [31] Casson F J, Peeters A G, Angioni C, Camenen Y, Hornsby W A, Snodin A P and Szepesi G 2010 Phys. Plasmas 17 102305 10.1063/1.3491110 Casson F J, Peeters A G, Angioni C, Camenen Y, Hornsby W A, Snodin A P and Szepesi G Phys. Plasmas 17 102305 2010 [32] Belli E A and Candy J 2018 Phys. Plasmas 25 032301 10.1063/1.5020298 Belli E A and Candy J Phys. Plasmas 25 032301 2018 [33] Saarelma S, Challis C D, Garzotti L, Frassinetti L, Maggi C F, Romanelli M, Stokes C (JET Contributors) 2018 Plasma Phys. Control. Fusion 60 014042 10.1088/1361-6587/aa8d45 Saarelma S, Challis C D, Garzotti L, Frassinetti L, Maggi C F, Romanelli M, Stokes C (JET Contributors) Plasma Phys. Control. Fusion 0741-3335 60 1 014042 2018 [34] Nishijima D, Kallenbach A, Gunter S, Kaufmann M, Lackner K, Maggi C F, Peeters A G, Pereverzev G V, Zaniol B (the ASDEX Upgrade Team) 2005 Plasma Phys. Control. Fusion 47 89 10.1088/0741-3335/47/1/006 Nishijima D, Kallenbach A, Gunter S, Kaufmann M, Lackner K, Maggi C F, Peeters A G, Pereverzev G V, Zaniol B (the ASDEX Upgrade Team) Plasma Phys. Control. Fusion 0741-3335 47 1 006 2005 89 [35] Noterdaeme J M et al (EFDA-JET-EFDA contributor) 2003 Nucl. Fusion 43 274 10.1088/0029-5515/43/4/309 Noterdaeme J M et al (EFDA-JET-EFDA contributor) Nucl. Fusion 0029-5515 43 4 309 2003 274 [36] Beliën A J C, Botchev M A, Goedbloed J P, van der Holst B and Keppens R 2002 J. Comput. Phys. 182 91–117 10.1006/jcph.2002.7153 Beliën A J C, Botchev M A, Goedbloed J P, van der Holst B and Keppens R J. Comput. Phys. 182 2002 91 117 [37] Blokland J W S and Pinches S D 2011 Plasma Phys. Control. Fusion 53 105009 10.1088/0741-3335/53/10/105009 Blokland J W S and Pinches S D Plasma Phys. Control. Fusion 0741-3335 53 10 105009 2011 [38] Burrell K H 1997 Phys. Plasmas 4 1500 10.1063/1.872367 Burrell K H Phys. Plasmas 1070-664X 4 1997 1500 [39] Antonsen T M, Drake J F, Guzdar P N, Hassam A B, Lau Y T, Liu C S and Novakovskii S V 1996 Phys. Plasmas 3 2221 10.1063/1.871928 Antonsen T M, Drake J F, Guzdar P N, Hassam A B, Lau Y T, Liu C S and Novakovskii S V Phys. Plasmas 1070-664X 3 1996 2221 [40] Green J M and Chance M S 1981 Nucl. Fusion 21 453 10.1088/0029-5515/21/4/002 Green J M and Chance M S Nucl. Fusion 0029-5515 21 4 002 1981 453 [41] Freidberg J P 2014 Ideal Magnetohydrodynamics (Cambridge: Cambridge University Press) Freidberg J P Ideal Magnetohydrodynamics 2014 [42] Zehrfeld H P and Green B J 1972 Nucl. Fusion 21 569 10.1088/0029-5515/12/5/005 Zehrfeld H P and Green B J Nucl. Fusion 0029-5515 21 1972 569 [43] Green B and Zehrfeld H 1973 Nucl. Fusion 13 750 10.1088/0029-5515/13/5/014 Green B and Zehrfeld H Nucl. Fusion 0029-5515 13 5 014 1973 750 [44] Maschke E K and Perrin H 1980 Plasma Phys. 22 579 10.1088/0032-1028/22/6/007 Maschke E K and Perrin H Plasma Phys. 0032-1028 22 6 007 1980 579 [45] Hameiri E 1983 Phys. Fluids 26 230 10.1063/1.864012 Hameiri E Phys. Fluids 0031-9171 26 1983 230 [46] López O E and Guazzotto L 2017 Phys. Plasmas 24 032501 10.1063/1.4976837 López O E and Guazzotto L Phys. Plasmas 24 032501 2017 [47] Cooper W A and Hirshman S P 1987 Plasma Phys. Control. Fusion 29 933 10.1088/0741-3335/29/7/010 Cooper W A and Hirshman S P Plasma Phys. Control. Fusion 0741-3335 29 7 010 1987 933 [48] Agrawal A K, Bhattacharyya S N and Sen A 1992 Plasma Phys. Control. Fusion 33 1211 10.1088/0741-3335/34/7/004 Agrawal A K, Bhattacharyya S N and Sen A Plasma Phys. Control. Fusion 0741-3335 33 1992 1211 [49] Semenzato S, Gruber R and Zehrfeld H P 1984 Comput. Phys. Rep. 1 389 10.1016/0167-7977(84)90011-X Semenzato S, Gruber R and Zehrfeld H P Comput. Phys. Rep. 0167-7977 1 1984 389 [50] Furukawa M, Nakamura Y, Hamaguchi S and Wakatani M 2000 J. Plasma Fusion Res. 76 937 Furukawa M, Nakamura Y, Hamaguchi S and Wakatani M J. Plasma Fusion Res. 0918-7928 76 2000 937 [51] Beliën A J C, Botchev M A, Goedbloed J P, van der Holst B and Keppens R 2002 J. Comput. Phys. 182 91 10.1006/jcph.2002.7153 Beliën A J C, Botchev M A, Goedbloed J P, van der Holst B and Keppens R J. Comput. Phys. 182 2002 91 [52] Guazzotto L, Betti R, Manickam J and Kaye S 2004 Phys. Plasmas 11 604 10.1063/1.1637918 Guazzotto L, Betti R, Manickam J and Kaye S Phys. Plasmas 11 2004 604 [53] Lee J P and Cerfon A 2015 Comput. Phys. Commun. 190 72 10.1016/j.cpc.2015.01.015 Lee J P and Cerfon A Comput. Phys. Commun. 0010-4655 190 2015 72 [54] Hinton F L and Wong S K 1985 Phys. Fluids 28 3082 10.1063/1.865350 Hinton F L and Wong S K Phys. Fluids 0031-9171 28 1985 3082 [55] Helander P 2014 Rep. Prog. Phys. 77 087001 10.1088/0034-4885/77/8/087001 Helander P Rep. Prog. Phys. 0034-4885 77 8 087001 2014 [56] Bonoli P T, Porkolab M, Ramos J J, Blackfield D T, Devoto R S and Fenstermacher M E 1990 Nucl. Fusion 30 533 10.1088/0029-5515/30/3/014 Bonoli P T, Porkolab M, Ramos J J, Blackfield D T, Devoto R S and Fenstermacher M E Nucl. Fusion 0029-5515 30 3 014 1990 533 [57] Grad H and Hogan J 1970 Phys. Rev. Lett. 24 1337 10.1103/PhysRevLett.24.1337 Grad H and Hogan J Phys. Rev. Lett. 0031-9007 24 1970 1337 [58] Dory R A and Peng Y-K M 1977 Nucl. Fusion 17 21 10.1088/0029-5515/17/1/003 Dory R A and Peng Y-K M Nucl. Fusion 0029-5515 17 1 003 1977 21 [59] Grad H and Rubin H 1958 J. Nucl. Eng. 7 284 10.1016/0891-3919(58)90139-6 Grad H and Rubin H J. Nucl. Eng. 7 1958 284 [60] Shafranov V 1958 Sov. Phys. JETP 6 545 Shafranov V Sov. Phys. JETP 0038-5646 6 1958 545 [61] Jardin S 2010 Computational Methods in Plasma Physics (Boca Raton, FL: CRC Press) 10.1201/EBK1439810958 Jardin S Computational Methods in Plasma Physics 2010 [62] Takeda T and Tokuda S 1991 J. Comput. Phys. 93 1 10.1016/0021-9991(91)90074-U Takeda T and Tokuda S J. Comput. Phys. 93 1991 1 [63] Goedbloed J P, Keppens R and Poedts S 2010 Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas (Cambridge: Cambridge University Press) 10.1017/CBO9781139195560 Goedbloed J P, Keppens R and Poedts S Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas 2010 [64] Catto P J, Pusztai I and Krasheninnikov S I 2015 J. Plasma Phys. 81 515810603 10.1017/S0022377815001245 Catto P J, Pusztai I and Krasheninnikov S I J. Plasma Phys. 81 515810603 2015 [65] LoDestro L L and Pearlstein L D 1994 Phys. Plasmas 1 90 10.1063/1.870464 LoDestro L L and Pearlstein L D Phys. Plasmas 1070-664X 1 1994 90 [66] Shafranov V D 1966 Rev. Plasma Phys. 2 103 Shafranov V D Rev. Plasma Phys. 0080-2050 2 1966 103 [67] Cerfon A J and Freidberg J P 2010 Phys. Plasmas 17 032502 10.1063/1.3328818 Cerfon A J and Freidberg J P Phys. Plasmas 17 032502 2010 [68] Greene J M 1996 Phys. Plasmas 3 8 10.1063/1.871828 Greene J M Phys. Plasmas 1070-664X 3 1996 8 [69] Coppi B, Ferreira A and Ramos J J 1980 Phys. Rev. Lett. 44 990 10.1103/PhysRevLett.44.990 Coppi B, Ferreira A and Ramos J J Phys. Rev. Lett. 0031-9007 44 1980 990 [70] Ridolfini V P et al 2003 Nucl. Fusion 43 469 10.1088/0029-5515/43/6/309 Ridolfini V P et al Nucl. Fusion 0029-5515 43 6 309 2003 469 [71] Pataki A, Cerfon A J, Freidberg J P, Greengard L and O’Neil M 2013 J. Comput. Phys. 243 28 10.1016/j.jcp.2013.02.045 Pataki A, Cerfon A J, Freidberg J P, Greengard L and O’Neil M J. Comput. Phys. 243 2013 28 Publisher Copyright: © 2019 IOP Publishing Ltd.
PY - 2019/9/4
Y1 - 2019/9/4
N2 - We investigate the impact of toroidal rotation on axisymmetric MHD equilibria analytically and numerically, with a focus on the change of the safety factor and magnetic shear induced by the flow. When the toroidal rotation is radially localized by an external momentum source, the pressure due to the flow can change the magnetic configuration and the safety factor significantly, even for subsonic flows. Specifically, when the radial profile of the safety factor is not conserved throughout a discharge, toroidal flow can lead to magnetic shear reversal for the equilibrium magnetic field, and we find that the magnitude of the negative shear is amplified for cross sections with large negative triangularity. This has implications for both magnetohydrodynamic stability and anomalous transport. Furthermore, even when the magnetic flux is conserved and the radial magnetic shear profile does not change, the toroidal flow can modify the local magnetic shear. The poloidal variations of the local magnetic shear due to the flow can stabilize magnetohydrodynamic ballooning modes.
AB - We investigate the impact of toroidal rotation on axisymmetric MHD equilibria analytically and numerically, with a focus on the change of the safety factor and magnetic shear induced by the flow. When the toroidal rotation is radially localized by an external momentum source, the pressure due to the flow can change the magnetic configuration and the safety factor significantly, even for subsonic flows. Specifically, when the radial profile of the safety factor is not conserved throughout a discharge, toroidal flow can lead to magnetic shear reversal for the equilibrium magnetic field, and we find that the magnitude of the negative shear is amplified for cross sections with large negative triangularity. This has implications for both magnetohydrodynamic stability and anomalous transport. Furthermore, even when the magnetic flux is conserved and the radial magnetic shear profile does not change, the toroidal flow can modify the local magnetic shear. The poloidal variations of the local magnetic shear due to the flow can stabilize magnetohydrodynamic ballooning modes.
KW - MHD equilibrium
KW - magnetic shear
KW - plasma equilibrium shape
KW - tokamak
KW - toroidal rotation
UR - http://www.scopus.com/inward/record.url?scp=85072709536&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85072709536&partnerID=8YFLogxK
U2 - 10.1088/1361-6587/ab3a7f
DO - 10.1088/1361-6587/ab3a7f
M3 - Article
AN - SCOPUS:85072709536
SN - 0741-3335
VL - 61
JO - Plasma Physics and Controlled Fusion
JF - Plasma Physics and Controlled Fusion
IS - 10
M1 - 105007
ER -