Majorization for CRFs and latent likelihoods

Tony Jebara, Anna Choromanska

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The partition function plays a key role in probabilistic modeling including conditional random fields, graphical models, and maximum likelihood estimation. To optimize partition functions, this article introduces a quadratic variational upper bound. This inequality facilitates majorization methods: optimization of com-plicated functions through the iterative solution of simpler sub-problems. Such bounds remain efficient to compute even when the partition function involves a graphical model (with small tree-width) or in latent likelihood settings. For large-scale problems, low-rank versions of the bound are provided and outper-form LBFGS as well as first-order methods. Several learning applications are shown and reduce to fast and convergent update rules. Experimental results show advantages over state-of-the-art optimization methods.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 25
Subtitle of host publication26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
Pages557-565a
StatePublished - 2012
Event26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012 - Lake Tahoe, NV, United States
Duration: Dec 3 2012Dec 6 2012

Publication series

NameAdvances in Neural Information Processing Systems
Volume1
ISSN (Print)1049-5258

Other

Other26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
Country/TerritoryUnited States
CityLake Tahoe, NV
Period12/3/1212/6/12

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Majorization for CRFs and latent likelihoods'. Together they form a unique fingerprint.

Cite this