Majorization for CRFs and latent likelihoods (Supplementary material)

Tony Jebara, Anna Choromanska

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This supplement presents additional details in support of the full article. These include the application of the majorization method to maximum entropy problems. It also contains proofs of the various theorems, in particular, a guarantee that the bound majorizes the partition function. In addition, a proof is provided guaranteeing convergence on (non-latent) maximum conditional likelihood problems. The supplement also contains supporting lemmas that show the bound remains applicable in constrained optimization problems. The supplement then proves the soundness of the junction tree implementation of the bound for graphical mod-els with large n. It also proves the soundness of the low-rank implementation of the bound for problems with large d. Finally, the supplement contains additional experiments and figures to provide further empirical support for the majorization methodology.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 25
Subtitle of host publication26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
Pages565b-574
StatePublished - 2012
Event26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012 - Lake Tahoe, NV, United States
Duration: Dec 3 2012Dec 6 2012

Publication series

NameAdvances in Neural Information Processing Systems
Volume1
ISSN (Print)1049-5258

Other

Other26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
Country/TerritoryUnited States
CityLake Tahoe, NV
Period12/3/1212/6/12

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Majorization for CRFs and latent likelihoods (Supplementary material)'. Together they form a unique fingerprint.

Cite this