Mapping on multi/many-core systems: Survey of current and emerging trends

Amit Kumar Singh, Muhammad Shafique, Akash Kumar, Jörg Henkel

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The reliance on multi/many-core systems to satisfy the high performance requirement of complex embedded software applications is increasing. This necessitates the need to realize efficient mapping methodologies for such complex computing platforms. This paper provides an extensive survey and categorization of state-of-the-art mapping methodologies and highlights the emerging trends for multi/many-core systems. The methodologies aim at optimizing system's resource usage, performance, power consumption, temperature distribution and reliability for varying application models. The methodologies perform design-time and run-time optimization for static and dynamic workload scenarios, respectively. These optimizations are necessary to fulfill the end-user demands. Comparison of the methodologies based on their optimization aim has been provided. The trend followed by the methodologies and open research challenges have also been discussed.

Original languageEnglish (US)
Title of host publicationProceedings of the 50th Annual Design Automation Conference, DAC 2013
DOIs
StatePublished - 2013
Event50th Annual Design Automation Conference, DAC 2013 - Austin, TX, United States
Duration: May 29 2013Jun 7 2013

Publication series

NameProceedings - Design Automation Conference
ISSN (Print)0738-100X

Other

Other50th Annual Design Automation Conference, DAC 2013
CountryUnited States
CityAustin, TX
Period5/29/136/7/13

Keywords

  • Application mapping
  • Embedded systems
  • Multiprocessor Systems-on-Chip

ASJC Scopus subject areas

  • Computer Science Applications
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Modeling and Simulation

Fingerprint Dive into the research topics of 'Mapping on multi/many-core systems: Survey of current and emerging trends'. Together they form a unique fingerprint.

Cite this