Matrix inference and estimation in multi-layer modelsThis article is an updated version of: Pandit P, Sahraee Ardakan M, Rangan S, Schniter P and Fletcher A K 2020 Matrix inference and estimation in multi-layer models Advances in Neural Information Processing Systems vol 33 ed H Larochelle, M Ranzato, R Hadsell, M F Balcan and H Lin (New York: Curran Associates) pp 22456–67. Code available at https://github.com/parthe/ML-Mat-VAMP.

Parthe Pandit, Mojtaba Sahraee-Ardakan, Sundeep Rangan, Philip Schniter, Alyson K. Fletcher

Research output: Contribution to journalArticlepeer-review

Abstract

We consider the problem of estimating the input and hidden variables of a stochastic multi-layer neural network (NN) from an observation of the output. The hidden variables in each layer are represented as matrices with statistical interactions along both rows as well as columns. This problem applies to matrix imputation, signal recovery via deep generative prior models, multi-task and mixed regression, and learning certain classes of two-layer NNs. We extend a recently-developed algorithm—multi-layer vector approximate message passing, for this matrix-valued inference problem. It is shown that the performance of the proposed multi-layer matrix vector approximate message passing algorithm can be exactly predicted in a certain random large-system limit, where the dimensions N Ã d of the unknown quantities grow as N → ∞ with d fixed. In the two-layer neural-network learning problem, this scaling corresponds to the case where the number of input features as well as training samples grow to infinity but the number of hidden nodes stays fixed. The analysis enables a precise prediction of the parameter and test error of the learning.

Original languageEnglish (US)
Article number124004
JournalJournal of Statistical Mechanics: Theory and Experiment
Volume2021
Issue number12
DOIs
StatePublished - Dec 2021

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Statistics, Probability and Uncertainty

Fingerprint

Dive into the research topics of 'Matrix inference and estimation in multi-layer modelsThis article is an updated version of: Pandit P, Sahraee Ardakan M, Rangan S, Schniter P and Fletcher A K 2020 Matrix inference and estimation in multi-layer models Advances in Neural Information Processing Systems vol 33 ed H Larochelle, M Ranzato, R Hadsell, M F Balcan and H Lin (New York: Curran Associates) pp 22456–67. Code available at https://github.com/parthe/ML-Mat-VAMP.'. Together they form a unique fingerprint.

Cite this