Measuring cell identity in noisy biological systems

Research output: Contribution to journalArticlepeer-review

Abstract

Global gene expression measurements are increasingly obtained as a function of cell type, spatial position within a tissue and other biologically meaningful coordinates. Such data should enable quantitative analysis of the cell-type specificity of gene expression, but such analyses can often be confounded by the presence of noise. We introduce a specificity measure Spec that quantifies the information in a gene's complete expression profile regarding any given cell type, and an uncertainty measure dSpec, which measures the effect of noise on specificity. Using global gene expression data from the mouse brain, plant root and human white blood cells, we show that Spec identifies genes with variable expression levels that are nonetheless highly specific of particular cell types. When samples from different individuals are used, dSpec measures genes' transcriptional plasticity in each cell type. Our approach is broadly applicable to mapped gene expression measurements in stem cell biology, developmental biology, cancer biology and biomarker identification. As an example of such applications, we show that Spec identifies a new class of biomarkers, which exhibit variable expression without compromising specificity. The approach provides a unifying theoretical framework for quantifying specificity in the presence of noise, which is widely applicable across diverse biological systems.

Original languageEnglish (US)
Pages (from-to)9093-9107
Number of pages15
JournalNucleic acids research
Volume39
Issue number21
DOIs
StatePublished - Nov 2011

ASJC Scopus subject areas

  • Genetics

Fingerprint Dive into the research topics of 'Measuring cell identity in noisy biological systems'. Together they form a unique fingerprint.

Cite this