Metal-rich stars are less suitable for the evolution of life on their planets

Anna V. Shapiro, Christoph Brühl, Klaus Klingmüller, Benedikt Steil, Alexander I. Shapiro, Veronika Witzke, Nadiia Kostogryz, Laurent Gizon, Sami K. Solanki, Jos Lelieveld

Research output: Contribution to journalArticlepeer-review

Abstract

Atmospheric ozone and oxygen protect the terrestrial biosphere against harmful ultraviolet (UV) radiation. Here, we model atmospheres of Earth-like planets hosted by stars with near-solar effective temperatures (5300 to 6300 K) and a broad range of metallicities covering known exoplanet host stars. We show that paradoxically, although metal-rich stars emit substantially less ultraviolet radiation than metal-poor stars, the surface of their planets is exposed to more intense ultraviolet radiation. For the stellar types considered, metallicity has a larger impact than stellar temperature. During the evolution of the universe, newly formed stars have progressively become more metal-rich, exposing organisms to increasingly intense ultraviolet radiation. Our findings imply that planets hosted by stars with low metallicity are the best targets to search for complex life on land.

Original languageEnglish (US)
Article number1893
JournalNature communications
Volume14
Issue number1
DOIs
StatePublished - Dec 2023

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Metal-rich stars are less suitable for the evolution of life on their planets'. Together they form a unique fingerprint.

Cite this