Microfluidic encryption of on-chip biochemical assays

Sk Subidh Ali, Mohamed Ibrahim, Ozgur Sinanoglu, Krishnendu Chakrabarty, Ramesh Karri

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Recent security analysis of digital micro-fluidic biochips (DMFBs) has revealed that the DMFB design flow is vulnerable to IP piracy, Trojan attacks, overproduction, and counterfeiting. An attacker can launch assay manipulation attacks against DMFBs that are used for clinical diagnostics in healthcare. Moreover, security for lab-on-chip has emerged as an important design criterion in view of the recent findings about spurious test results from Theranos Edison devices. We present encryption based on micro-fluidic multiplexers, wherein an assay is encrypted with a secret-key pattern of fluidic operations. Only an authorized user of the DMFB possesses the secret-key pattern and can get the correct assay outcome. Simulation results show that for practical assays, e.g., protein dilution, an 8-bit secret key is sufficient for overcoming threats to DMFBs.

Original languageEnglish (US)
Title of host publicationProceedings - 2016 IEEE Biomedical Circuits and Systems Conference, BioCAS 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages152-155
Number of pages4
ISBN (Electronic)9781509029594
DOIs
StatePublished - 2016
Event12th IEEE Biomedical Circuits and Systems Conference, BioCAS 2016 - Shanghai, China
Duration: Oct 17 2016Oct 19 2016

Publication series

NameProceedings - 2016 IEEE Biomedical Circuits and Systems Conference, BioCAS 2016

Other

Other12th IEEE Biomedical Circuits and Systems Conference, BioCAS 2016
CountryChina
CityShanghai
Period10/17/1610/19/16

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Instrumentation
  • Biomedical Engineering

Fingerprint Dive into the research topics of 'Microfluidic encryption of on-chip biochemical assays'. Together they form a unique fingerprint.

Cite this