Abstract
The purpose of this in vitro microleakage study was to evaluate four low-viscosity composite resin systems. Each resin system included the corresponding bonding agent for each respective flowable composite. A hybrid material was used as a control. A total of 75 noncarious, freshly extracted human teeth were prepared with a Class 5 occlusal preparation and a gingival preparation at the cementoenamel junction. The materials were inserted according to the manufacturers' recommendations using the single-component bonding agent for each system. Teeth were thermocycled 800 times between 5 degrees C and 55 degrees C with 30-second dwell times. The teeth were then coated with nail polish 1 mm short of the restoration, placed in a basic fuchsin dye for 24 hours, and sectioned with a diamond wheel. Enamel and dentin/cementum margins were analyzed for microleakage on a scale of 0 (no leakage) to 3 (axial wall). Results were evaluated with the Fisher's exact test. The results of the study indicate that there was no leakage at the enamel margin of any restorations. No statistically significant differences in microleakage were found in dentin/cementum margins among the samples in the experimental group or between the experimental group and control group. The results indicate flowable composites demonstrate resistance to microleakage in both enamel and cementum/dentin margins similar to TPH hybrid composite.
Original language | English (US) |
---|---|
Pages (from-to) | 705-708, 710, 712; quiz 714 |
Journal | Compendium of continuing education in dentistry (Jamesburg, N.J. : 1995) |
Volume | 21 |
Issue number | 9 |
State | Published - Sep 2000 |
ASJC Scopus subject areas
- General Medicine