TY - JOUR
T1 - Microtubules control cellular shape and coherence in amoeboid migrating cells
AU - Kopf, Aglaja
AU - Renkawitz, Jörg
AU - Hauschild, Robert
AU - Girkontaite, Irute
AU - Tedford, Kerry
AU - Merrin, Jack
AU - Thorn-Seshold, Oliver
AU - Trauner, Dirk
AU - Häcker, Hans
AU - Fischer, Klaus Dieter
AU - Kiermaier, Eva
AU - Sixt, Michael
N1 - Funding Information:
This work was funded by the European Research Council (ERC StG 281556 and CoG 724373), two grants from the Austrian Science Fund (FWF; P29911 and DK Nanocell W1250-B20 to M. Sixt) and by the German Research Foundation (DFG SFB1032 project B09) to O. Thorn-Seshold and D. Trauner. J. Renkawitz was supported by ISTFELLOW funding from the People Program (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under the Research Executive Agency grant agreement (291734) and a European Molecular Biology Organization long-term fellowship (ALTF 1396-2014) co-funded by the European Commission (LTFCO-FUND2013, GA-2013-609409), E. Kiermaier by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC 2151—390873048, and H. Häcker by the American Lebanese Syrian Associated Charities. K.-D. Fischer was supported by the Analysis, Imaging and Modelling of Neuronal and Inflammatory Processes graduate school funded by the Ministry of Economics, Science, and Digitisation of the State Saxony-Anhalt and by the European Funds for Social and Regional Development. The authors declare no competing financial interests.
Funding Information:
The authors thank the Scientific Service Units (Life Sciences, Bioimaging, Preclinical) of the Institute of Science and Technology Austria for excellent support. This work was funded by the European Research Council (ERC StG 281556 and CoG 724373), two grants from the Austrian Science Fund (FWF; P29911 and DK Nanocell W1250-B20 to M. Sixt) and by the German Research Foundation (DFG SFB1032 project B09) to O. Thorn-Seshold and D. Trauner. J. Renkawitz was supported by ISTFELLOW funding from the People Program (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under the Research Executive Agency grant agreement (291734) and a European Molecular Biology Organization long-term fellowship (ALTF 1396-2014) co-funded by the European Commission (LTFCOFUND2013, GA-2013-609409), E. Kiermaier by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy-EXC 2151-390873048, and H. Häcker by the American Lebanese Syrian Associated Charities. K.-D. Fischer was supported by the Analysis, Imaging and Modelling of Neuronal and Inflammatory Processes graduate school funded by the Ministry of Economics, Science, and Digitisation of the State Saxony-Anhalt and by the European Funds for Social and Regional Development. The authors declare no competing financial interests. Author contributions: A. Kopf, E. Kiermaier, and M. Sixt conceived the study and designed experiments; A. Kopf, E. Kiermaier, and J. Renkawitz performed and analyzed experiments; R. Hauschild generated image analysis tools and helped with quantitative analysis; J. Merrin generated master templates for microfluidics devices; I. Girkontaite, K. Tedford, and K.-D. Fischer generated Lfc-deficient mice; O. Thorn-Seshold and D. Trauner generated photoactivatable compounds; H. Häcker generated hematopoietic precursor cell lines; and A. Kopf, E. Kiermaier, and M. Sixt wrote and edited the paper. All authors reviewed the manuscript.
Publisher Copyright:
© 2020 Kopf et al. This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).
PY - 2020
Y1 - 2020
N2 - Cells navigating through complex tissues face a fundamental challenge: while multiple protrusions explore different paths, the cell needs to avoid entanglement. How a cell surveys and then corrects its own shape is poorly understood. Here, we demonstrate that spatially distinct microtubule dynamics regulate amoeboid cell migration by locally promoting the retraction of protrusions. In migrating dendritic cells, local microtubule depolymerization within protrusions remote from the microtubule organizing center triggers actomyosin contractility controlled by RhoA and its exchange factor Lfc. Depletion of Lfc leads to aberrant myosin localization, thereby causing two effects that rate-limit locomotion: (1) impaired cell edge coordination during path finding and (2) defective adhesion resolution. Compromised shape control is particularly hindering in geometrically complex microenvironments, where it leads to entanglement and ultimately fragmentation of the cell body. We thus demonstrate that microtubules can act as a proprioceptive device: they sense cell shape and control actomyosin retraction to sustain cellular coherence.
AB - Cells navigating through complex tissues face a fundamental challenge: while multiple protrusions explore different paths, the cell needs to avoid entanglement. How a cell surveys and then corrects its own shape is poorly understood. Here, we demonstrate that spatially distinct microtubule dynamics regulate amoeboid cell migration by locally promoting the retraction of protrusions. In migrating dendritic cells, local microtubule depolymerization within protrusions remote from the microtubule organizing center triggers actomyosin contractility controlled by RhoA and its exchange factor Lfc. Depletion of Lfc leads to aberrant myosin localization, thereby causing two effects that rate-limit locomotion: (1) impaired cell edge coordination during path finding and (2) defective adhesion resolution. Compromised shape control is particularly hindering in geometrically complex microenvironments, where it leads to entanglement and ultimately fragmentation of the cell body. We thus demonstrate that microtubules can act as a proprioceptive device: they sense cell shape and control actomyosin retraction to sustain cellular coherence.
UR - http://www.scopus.com/inward/record.url?scp=85084407520&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85084407520&partnerID=8YFLogxK
U2 - 10.1083/JCB.201907154
DO - 10.1083/JCB.201907154
M3 - Article
C2 - 32379884
AN - SCOPUS:85084407520
SN - 0021-9525
VL - 219
JO - Journal of Cell Biology
JF - Journal of Cell Biology
IS - 6
M1 - e201907154
ER -