TY - JOUR
T1 - Migration and trapping of photoinjected excess electrons in double-stranded B-form DNA but not in single-stranded DNA
AU - Shafirovich, Vladimir Ya
AU - Dourandin, Alexander
AU - Luneva, Natalia P.
AU - Geacintov, Nicholas E.
PY - 1997/7/24
Y1 - 1997/7/24
N2 - Photoexcitation of a pyrene derivative covalently bound to double-stranded calf thymus DNA with 355 nm Nd:YAG laser pulses (fwhm = 24 ps, 50 mJ/cm2/pulse) results in the efficient two-photon-induced ionization of the pyrenyl residues. By use of nanosecond transient absorption techniques, it is shown that the excess electrons injected into the DNA can reduce methylviologen cations (MV2+) that are noncovalently bound to the DNA but not MV2+ in the outer aqueous solution phase. In double-stranded DNA, this reduction of MV2+ to MV•+ occurs via two kinetic phases, a rapid one that is complete within ≤7 ns and a slower one (200-300 ns) due to the diffusive reduction of MV2+ by hydrated electrons. The appearance of the first, rapid reduction phase of MV2+ depends on the secondary structure of the DNA, since it is observed only in the double-stranded form but not in the denatured, single-stranded form. This rapid reduction phase is entirely eliminated upon the addition of magnesium ions, which displace the positively charged MV2+ cations from the double-stranded DNA molecules. By variation of the concentration of MV2+ cations at a constant distribution of covalently bound pyrenyl residues (60 base pairs per pyrenyl residue), a mean distance of migration of excess electrons in double-stranded DNA of ca. 40 Å is estimated.
AB - Photoexcitation of a pyrene derivative covalently bound to double-stranded calf thymus DNA with 355 nm Nd:YAG laser pulses (fwhm = 24 ps, 50 mJ/cm2/pulse) results in the efficient two-photon-induced ionization of the pyrenyl residues. By use of nanosecond transient absorption techniques, it is shown that the excess electrons injected into the DNA can reduce methylviologen cations (MV2+) that are noncovalently bound to the DNA but not MV2+ in the outer aqueous solution phase. In double-stranded DNA, this reduction of MV2+ to MV•+ occurs via two kinetic phases, a rapid one that is complete within ≤7 ns and a slower one (200-300 ns) due to the diffusive reduction of MV2+ by hydrated electrons. The appearance of the first, rapid reduction phase of MV2+ depends on the secondary structure of the DNA, since it is observed only in the double-stranded form but not in the denatured, single-stranded form. This rapid reduction phase is entirely eliminated upon the addition of magnesium ions, which displace the positively charged MV2+ cations from the double-stranded DNA molecules. By variation of the concentration of MV2+ cations at a constant distribution of covalently bound pyrenyl residues (60 base pairs per pyrenyl residue), a mean distance of migration of excess electrons in double-stranded DNA of ca. 40 Å is estimated.
UR - http://www.scopus.com/inward/record.url?scp=0031192483&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031192483&partnerID=8YFLogxK
U2 - 10.1021/jp970308l
DO - 10.1021/jp970308l
M3 - Article
AN - SCOPUS:0031192483
SN - 1520-6106
VL - 101
SP - 5863
EP - 5868
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
IS - 30
ER -