Abstract
3GPP air interface standards support meter-level position location of a user in a cellular network. With wider bandwidths and narrow antenna beamwidths available at mmWave frequencies, cellular networks now have the potential to provide sub-meter position location for each user. In this work, we provide an overview of 3GPP position location techniques that are designed for line-of-sight propagation. We discuss additional measurements required in the 3GPP standard that enable multipath-based non-line-of-sight position location. Further, we validate the concepts in this paper by using field data to test a map-based position location algorithm in an indoor office environment which has dimensions of 35 m by 65.5 m. We demonstrate how the fusion of angle of arrival and time of flight information in concert with a 3-D map of the office provides a mean accuracy of 5.72 cm at 28 GHz and 6.29 cm at 140 GHz, over 23 receiver distances ranging from 4.2 m to 32.3 m, using a single base station in line-of-sight and non-line-of-sight. We also conduct a theoretical analysis of the typical error experienced in the map-based position location algorithm and show that the complexity of the map-based algorithm is low enough to allow real-time implementation.
Original language | English (US) |
---|---|
Article number | 9348110 |
Journal | Proceedings - IEEE Global Communications Conference, GLOBECOM |
Volume | 2020-January |
DOIs | |
State | Published - Dec 2020 |
Event | 2020 IEEE Global Communications Conference, GLOBECOM 2020 - Virtual, Taipei, Taiwan, Province of China Duration: Dec 7 2020 → Dec 11 2020 |
Keywords
- 5G
- localization
- map-based
- mmWave
- navigation
- position location
- ray tracing
- site-specific propagation
ASJC Scopus subject areas
- Artificial Intelligence
- Computer Networks and Communications
- Hardware and Architecture
- Signal Processing