Minimax estimation of discontinuous optimal transport maps: The semi-discrete case

Aram Alexandre Pooladian, Vincent Divol, Jonathan Niles-Weed

Research output: Contribution to journalConference articlepeer-review

Abstract

We consider the problem of estimating the optimal transport map between two probability distributions, P and Q in Rd, on the basis of i.i.d. samples. All existing statistical analyses of this problem require the assumption that the transport map is Lipschitz, a strong requirement that, in particular, excludes any examples where the transport map is discontinuous. As a first step towards developing estimation procedures for discontinuous maps, we consider the important special case where the data distribution Q is a discrete measure supported on a finite number of points in Rd. We study a computationally efficient estimator initially proposed by Pooladian & Niles-Weed (2021), based on entropic optimal transport, and show in the semi-discrete setting that it converges at the minimax-optimal rate n−1/2, independent of dimension. Other standard map estimation techniques both lack finite-sample guarantees in this setting and provably suffer from the curse of dimensionality. We confirm these results in numerical experiments, and provide experiments for other settings, not covered by our theory, which indicate that the entropic estimator is a promising methodology for other discontinuous transport map estimation problems.

Original languageEnglish (US)
Pages (from-to)28128-28150
Number of pages23
JournalProceedings of Machine Learning Research
Volume202
StatePublished - 2023
Event40th International Conference on Machine Learning, ICML 2023 - Honolulu, United States
Duration: Jul 23 2023Jul 29 2023

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Minimax estimation of discontinuous optimal transport maps: The semi-discrete case'. Together they form a unique fingerprint.

Cite this