Abstract
Motivation: High-throughput protein identification experiments based on tandem mass spectrometry (MS/MS) often suffer from low sensitivity and low-confidence protein identifications. In a typical shotgun proteomics experiment, it is assumed that all proteins are equally likely to be present. However, there is often other evidence to suggest that a protein is present and confidence in individual protein identification can be updated accordingly. Results: We develop a method that analyzes MS/MS experiments in the larger context of the biological processes active in a cell. Our method, MSNet, improves protein identification in shotgun proteomics experiments by considering information on functional associations from a gene functional network. MSNet substantially increases the number of proteins identified in the sample at a given error rate. We identify 8-29% more proteins than the original MS experiment when applied to yeast grown in different experimental conditions analyzed on different MS/MS instruments, and 37% more proteins in a human sample. We validate up to 94% of our identifications in yeast by presence in ground-truth reference sets.
Original language | English (US) |
---|---|
Pages (from-to) | 2955-2961 |
Number of pages | 7 |
Journal | Bioinformatics |
Volume | 25 |
Issue number | 22 |
DOIs | |
State | Published - Nov 15 2009 |
ASJC Scopus subject areas
- Statistics and Probability
- Biochemistry
- Molecular Biology
- Computer Science Applications
- Computational Theory and Mathematics
- Computational Mathematics