Mitigating Temporal Misalignment by Discarding Outdated Facts

Michael J.Q. Zhang, Eunsol Choi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

While large language models are able to retain vast amounts of world knowledge seen during pretraining, such knowledge is prone to going out of date and is nontrivial to update. Furthermore, these models are often used under temporal misalignment, tasked with answering questions about the present, despite having only been trained on data collected in the past. To mitigate the effects of temporal misalignment, we propose fact duration prediction: the task of predicting how long a given fact will remain true. In our experiments, we demonstrate that identifying which facts are prone to rapid change can help models avoid reciting outdated information and determine which predictions require seeking out up-to-date knowledge sources. We also show how modeling fact duration improves calibration for knowledge-intensive tasks, such as open-retrieval question answering, under temporal misalignment, by discarding volatile facts. Our data and code are released publicly at https://github.com/mikejqzhang/mitigating_misalignment.

Original languageEnglish (US)
Title of host publicationEMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings
EditorsHouda Bouamor, Juan Pino, Kalika Bali
PublisherAssociation for Computational Linguistics (ACL)
Pages14213-14226
Number of pages14
ISBN (Electronic)9798891760608
DOIs
StatePublished - 2023
Event2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023 - Hybrid, Singapore, Singapore
Duration: Dec 6 2023Dec 10 2023

Publication series

NameEMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings

Conference

Conference2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023
Country/TerritorySingapore
CityHybrid, Singapore
Period12/6/2312/10/23

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'Mitigating Temporal Misalignment by Discarding Outdated Facts'. Together they form a unique fingerprint.

Cite this