Model Collapse Demystified: The Case of Regression

Elvis Dohmatob, Yunzhen Feng, Julia Kempe

Research output: Contribution to journalConference articlepeer-review

Abstract

The era of proliferation of large language and image generation models begs the question of what happens if models are trained on the synthesized outputs of other models. The phenomenon of "model collapse" refers to the situation whereby as a model is trained recursively on data generated from previous generations of itself over time, its performance degrades until the model eventually becomes completely useless, i.e. the model collapses. In this work, we investigate this phenomenon within the context of high-dimensional regression with Gaussian data, considering both low- and high-dimensional asymptotics. We derive analytical formulas that quantitatively describe this phenomenon in both under-parameterized and over-parameterized regimes. We show how test error increases linearly in the number of model iterations in terms of all problem hyperparameters (covariance spectrum, regularization, label noise level, dataset size) and further isolate how model collapse affects both bias and variance terms in our setup. We show that even in the noise-free case, catastrophic (exponentially fast) model-collapse can happen in the over-parametrized regime. In the special case of polynomial decaying spectral and source conditions, we obtain modified scaling laws which exhibit new crossover phenomena from fast to slow rates. We also propose a simple strategy based on adaptive regularization to mitigate model collapse. Our theoretical results are validated with experiments.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume37
StatePublished - 2024
Event38th Conference on Neural Information Processing Systems, NeurIPS 2024 - Vancouver, Canada
Duration: Dec 9 2024Dec 15 2024

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Model Collapse Demystified: The Case of Regression'. Together they form a unique fingerprint.

Cite this