Model selection for spatiotemporal modeling of early childhood sub-cortical development

James Fishbaugh, Beatriz Paniagua, Mahmoud Mostapha, Martin Styner, Veronica Murphy, John Gilmore, Guido Gerig

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Spatiotemporal shape models capture the dynamics of shape change over time and are an essential tool for monitoring and measuring anatomical growth or degeneration. In this paper we evaluate non-parametric shape regression on the challenging problem of modeling early childhood sub-cortical development starting from birth. Due to the flexibility of the model, it can be challenging to choose parameters which lead to a good model fit yet does not overfit. We systematically test a variety of parameter settings to evaluate model fit as well as the sensitivity of the method to specific parameters, and we explore the impact of missing data on model estimation.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2019
Subtitle of host publicationImage Processing
EditorsElsa D. Angelini, Elsa D. Angelini, Elsa D. Angelini, Bennett A. Landman
ISBN (Electronic)9781510625457
StatePublished - 2019
EventMedical Imaging 2019: Image Processing - San Diego, United States
Duration: Feb 19 2019Feb 21 2019

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
ISSN (Print)1605-7422


ConferenceMedical Imaging 2019: Image Processing
Country/TerritoryUnited States
CitySan Diego

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Model selection for spatiotemporal modeling of early childhood sub-cortical development'. Together they form a unique fingerprint.

Cite this