Modeling multiphase flow using fluctuating hydrodynamics

Anuj Chaudhri, John B. Bell, Alejandro L. Garcia, Aleksandar Donev

Research output: Contribution to journalArticlepeer-review

Abstract

Fluctuating hydrodynamics provides a model for fluids at mesoscopic scales where thermal fluctuations can have a significant impact on the behavior of the system. Here we investigate a model for fluctuating hydrodynamics of a single-component, multiphase flow in the neighborhood of the critical point. The system is modeled using a compressible flow formulation with a van der Waals equation of state, incorporating a Korteweg stress term to treat interfacial tension. We present a numerical algorithm for modeling this system based on an extension of algorithms developed for fluctuating hydrodynamics for ideal fluids. The scheme is validated by comparison of measured structure factors and capillary wave spectra with equilibrium theory. We also present several nonequilibrium examples to illustrate the capability of the algorithm to model multiphase fluid phenomena in a neighborhood of the critical point. These examples include a study of the impact of fluctuations on the spinodal decomposition following a rapid quench, as well as the piston effect in a cavity with supercooled walls. The conclusion in both cases is that thermal fluctuations affect the size and growth of the domains in off-critical quenches.

Original languageEnglish (US)
Article number033014
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volume90
Issue number3
DOIs
StatePublished - Sep 26 2014

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Modeling multiphase flow using fluctuating hydrodynamics'. Together they form a unique fingerprint.

Cite this