Modeling non-idealities in ionic polymer metal composites

Alain Boldini, Maurizio Porfiri

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Within the family of electroactive polymers, ionic polymer metal composites (IPMCs) stand out for their low driving voltage, operability in water, and biocompatibility. These characteristics make them attractive as soft actuators for applications in underwater robotics and biomedical engineering. However, their use is currently limited by the lack of predictability of their chemoelectromechanical behavior. Part of this unpredictability is associated with the complex microstructure of the ionic membrane forming the core of the IPMC. The membrane consists of a porous, negatively charged polymer network, which is neutralized by a solution of mobile counterions. In the literature, migration of counterions in the membrane is typically described through the Poisson-Nernst-Planck system of equations. To the best of our knowledge, non-ideal behaviors of the ionic saturating solution have never been considered in the IPMC literature. Here, we make a first step toward studying the effect of non-idealities on the mechanics and electrochemistry of IPMCs. We investigate four non-ideal behaviors of ionic solutions: 1. solvation (that is, the interaction between solute and solvent molecules due to ionic or dipole bonds); 2. electrostatic interactions that affect the mixing of ions in the solution, causing ions of one sign to be surrounded by ions of the opposite sign; 3. physical interactions between ions of opposite signs; and 4. steric effects associated with the finite volume of the membrane pores. Through numerical simulations, we demonstrate the role of each of these contributions on the formation of an electric double layer in a charged membrane near to an electrode, toward developing more realistic models to describe the mechanics and electrochemistry of IPMCs.

Original languageEnglish (US)
Title of host publicationElectroactive Polymer Actuators and Devices (EAPAD) XXIV
EditorsIain A. Anderson, John D. W. Madden, Herbert R. Shea
PublisherSPIE
ISBN (Electronic)9781510649590
DOIs
StatePublished - 2022
EventElectroactive Polymer Actuators and Devices (EAPAD) XXIV 2022 - Long Beach, United States
Duration: Apr 6 2022Apr 11 2022

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume12042
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceElectroactive Polymer Actuators and Devices (EAPAD) XXIV 2022
Country/TerritoryUnited States
CityLong Beach
Period4/6/224/11/22

Keywords

  • Actuators
  • ions
  • non-ideal behavior
  • solutions

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Modeling non-idealities in ionic polymer metal composites'. Together they form a unique fingerprint.

Cite this