TY - GEN
T1 - Modeling the impact of vehicle platooning on highway congestion
T2 - 21st International Conference on Hybrid Systems: Computation and Control, HSCC 2018
AU - Jin, Li
AU - Čičić, Mladen
AU - Amin, Saurabh
AU - Johansson, Karl H.
N1 - Publisher Copyright:
© 2018 Association for Computing Machinery.
PY - 2018/4/11
Y1 - 2018/4/11
N2 - Vehicle platooning is a promising technology that can lead to significant fuel savings and emission reduction. However, the macroscopic impact of vehicle platoons on highway traffic is not yet well understood. In this article, we propose a new fluid queuing model to study the macroscopic interaction between randomly arriving vehicle platoons and the background traffic at highway bottlenecks. This model, viewed as a stochastic switched system, is analyzed for two practically relevant priority rules: proportional (or mixed) and segmented priority. We provide intuitive stability conditions, and obtain bounds on the long-run average length and variance of queues for both priority rules. We use these results to study how platoon-induced congestion varies with the fraction of platooned vehicles, and their characteristics such as intra-platoon spacing and arrival rate. Our analysis reveals a basic tradeoff between congestion induced by the randomness of platoon arrivals, and efficiency gain due to a tighter intra-platoon spacing. This naturally leads to conditions under which the proportional priority is preferred over segmented priority. Somewhat surprisingly, our analytical results are in agreement with the simulation results based on a more sophisticated two-class cell transmission model.
AB - Vehicle platooning is a promising technology that can lead to significant fuel savings and emission reduction. However, the macroscopic impact of vehicle platoons on highway traffic is not yet well understood. In this article, we propose a new fluid queuing model to study the macroscopic interaction between randomly arriving vehicle platoons and the background traffic at highway bottlenecks. This model, viewed as a stochastic switched system, is analyzed for two practically relevant priority rules: proportional (or mixed) and segmented priority. We provide intuitive stability conditions, and obtain bounds on the long-run average length and variance of queues for both priority rules. We use these results to study how platoon-induced congestion varies with the fraction of platooned vehicles, and their characteristics such as intra-platoon spacing and arrival rate. Our analysis reveals a basic tradeoff between congestion induced by the randomness of platoon arrivals, and efficiency gain due to a tighter intra-platoon spacing. This naturally leads to conditions under which the proportional priority is preferred over segmented priority. Somewhat surprisingly, our analytical results are in agreement with the simulation results based on a more sophisticated two-class cell transmission model.
KW - Connected and autonomous vehicles
KW - Fluid queuing model
KW - Smart highways
KW - Stochastic switched systems
KW - Vehicle platooning
UR - http://www.scopus.com/inward/record.url?scp=85049466480&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85049466480&partnerID=8YFLogxK
U2 - 10.1145/3178126.3178146
DO - 10.1145/3178126.3178146
M3 - Conference contribution
AN - SCOPUS:85049466480
T3 - HSCC 2018 - Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)
SP - 237
EP - 246
BT - HSCC 2018 - Proceedings of the 21st International Conference on Hybrid Systems
PB - Association for Computing Machinery, Inc
Y2 - 11 April 2018 through 13 April 2018
ER -