Abstract
Membrane technology has become increasingly popular and important for separation processes in industries, as well as for desalination and wastewater treatment. Over the last decade, the merger of nanotechnology and membrane technology in the development of nanocomposite membranes has emerged as a rapidly expanding research area. The key motivation driving the development of nanocomposite membranes is the pursuit of high-performance liquid separation membranes that can address the bottlenecks of conventionally used polymeric membranes. Nanostructured materials in the form of zero to three-dimensions exhibit unique dimension-dependent morphology and topology that have triggered considerable attention in various fields. While the surface hydrophilicity, antibacterial, and photocatalytic properties of TiO2 are particularly attractive for liquid separation membranes, the geometry-dependent properties of the nanocomposite membrane can be further fine-tuned by selecting the nanostructures with the right dimension. This review aims to provide an overview and comments on the state-of-the-art modifications of liquid separation membrane using TiO2 as a classical example of multidimensional nanomaterials. The performances of TiO2-incorporated nanocomposite membranes are discussed with attention placed on the special features rendered by their structures and dimensions. The innovations and breakthroughs made in the synthesis and modifications of structure-controlled TiO2 and its composites have enabled fascinating and advantageous properties for the development of high-performance nanocomposite membranes for liquid separation.
Original language | English (US) |
---|---|
Article number | 448 |
Journal | Nanomaterials |
Volume | 13 |
Issue number | 3 |
DOIs | |
State | Published - Feb 2023 |
Keywords
- liquid separation
- membrane modification
- nanocomposite membrane
- nanomaterial dimensions
- titanium oxide
ASJC Scopus subject areas
- General Chemical Engineering
- General Materials Science