TY - JOUR
T1 - Molecular Shells and Range of Interactions in Ionic Liquids as a Function of Temperature
AU - Gao, Zhiyuan
AU - Teleanu, Florin
AU - Marr, Kelsey Anne
AU - Jerschow, Alexej
N1 - Publisher Copyright:
© 2025 The Authors. Published by American Chemical Society.
PY - 2025/2/27
Y1 - 2025/2/27
N2 - Room-temperature ionic liquids (RTILs) represent a versatile class of chemical systems composed entirely of oppositely charged species whose bulk properties can be fine-tuned by adjusting molecular structures and, consequently, intermolecular interactions. Understanding the intricate dynamics between ionic species can aid in the rational design of RTILs for specific applications in a range of fields, including catalysis and electrochemistry. Here, we investigate the temperature dependence of intermolecular interactions through magnetization transfer by means of 1H-19F heteronuclear Overhauser effect spectroscopy (HOESY) for two ionic liquids, namely, [BMIM][BF4] and [BMIM][PF6]. We find that the cross-relaxation rates vary significantly over a rather small temperature range, even changing sign. Molecular dynamics (MD) simulations on neat RTIL systems replicate this behavior well and further show that the dynamic properties rather than coordination changes of RTILs account for the observed temperature behavior. Furthermore, the investigation of different coordination shells highlights the change of interaction range with temperature even to the point where inner and outer coordination shells could be in distinct motional regimes with cross-relaxation rates of opposite sign. Since temperature changes lead primarily to dynamic changes rather than structural ones, these findings underscore the versatility and high thermal stability of ionic liquids.
AB - Room-temperature ionic liquids (RTILs) represent a versatile class of chemical systems composed entirely of oppositely charged species whose bulk properties can be fine-tuned by adjusting molecular structures and, consequently, intermolecular interactions. Understanding the intricate dynamics between ionic species can aid in the rational design of RTILs for specific applications in a range of fields, including catalysis and electrochemistry. Here, we investigate the temperature dependence of intermolecular interactions through magnetization transfer by means of 1H-19F heteronuclear Overhauser effect spectroscopy (HOESY) for two ionic liquids, namely, [BMIM][BF4] and [BMIM][PF6]. We find that the cross-relaxation rates vary significantly over a rather small temperature range, even changing sign. Molecular dynamics (MD) simulations on neat RTIL systems replicate this behavior well and further show that the dynamic properties rather than coordination changes of RTILs account for the observed temperature behavior. Furthermore, the investigation of different coordination shells highlights the change of interaction range with temperature even to the point where inner and outer coordination shells could be in distinct motional regimes with cross-relaxation rates of opposite sign. Since temperature changes lead primarily to dynamic changes rather than structural ones, these findings underscore the versatility and high thermal stability of ionic liquids.
UR - http://www.scopus.com/inward/record.url?scp=85218262830&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85218262830&partnerID=8YFLogxK
U2 - 10.1021/acs.jpclett.4c03576
DO - 10.1021/acs.jpclett.4c03576
M3 - Article
C2 - 39976539
AN - SCOPUS:85218262830
SN - 1948-7185
VL - 16
SP - 2120
EP - 2127
JO - Journal of Physical Chemistry Letters
JF - Journal of Physical Chemistry Letters
IS - 8
ER -