Abstract
The use of peptide engineering to develop self-assembling membranes that are responsive to cellular enzyme activities is reported. The membranes are obtained by combining hyaluronan (HA) and a rationally designed peptide amphiphile (PA) containing a proteolytic domain (GPQGIWGQ octapeptide) sensitive to matrix metalloproteinase-1 (MMP-1). Insertion of an octapeptide in a typical PA structure does not disturb its self-assembly into fibrillar nanostructures neither the ability to form membranes with HA. In vitro enzymatic degradation with hyaluronidase and MMP-1 shows that membranes containing the MMP-1 substrate exhibit enhanced enzymatic degradation, compared with control membranes (absence of MMP-1 cleavable peptide or containing a MMP-1 insensitive sequence), being completely degraded after 7 days. Cell viability and proliferation is minimally affected by the enzymatically cleavable functionality of the membrane, but the presence of MMP-1 cleavable sequence does stimulate the secretion of MMP-1 by fibroblasts and interfere with matrix deposition, particularly the deposition of collagen. By showing cell-responsiveness to biochemical signals presented on self-assembling membranes, this study highlights the ability of modulating certain cellular activities through matrix engineering. This concept can be further explored to understand the cellular remodeling process and as a strategy to develop artificial matrices with more biomimetic degradation for tissue engineering applications. Self-assembling membranes, molecularly designed with enzyme-cleavable building blocks (hyaluronan and peptide amphiphiles containing a proteolytic domain) afford cell-mediated degradation and lead to enhanced cellular colonization of the membranes. This concept can be used as a strategy to develop artificial matrices with more biomimetic degradation for tissue engineering applications.
Original language | English (US) |
---|---|
Pages (from-to) | 602-612 |
Number of pages | 11 |
Journal | Advanced Healthcare Materials |
Volume | 4 |
Issue number | 4 |
DOIs | |
State | Published - Mar 1 2015 |
Keywords
- Degradation
- Enzyme-responsive materials
- Hyaluronan
- Matrix metalloproteinase-1
- Peptide amphiphiles
- Self-assembling membranes
ASJC Scopus subject areas
- Biomaterials
- Biomedical Engineering
- Pharmaceutical Science