Abstract
Electron behavior in an electron cyclotron resonance microwave discharge maintained by the TM01 mode fields of a cylindrical waveguide has been investigated via a Monte Carlo simulation. Since this discharge has high degree of ionization (≥1%), a self-consistent simulation of the plasma dynamics is achieved through the use of the ponderomotive and grad B (-μ∇∥B) forces. Accumulation of negative charges on the boundary surface sets up a sheath whose influence is also taken into account. The time averaged, spatially dependent electron energy distribution (EED) is computed self-consistently by integrating electron trajectories subjected to the microwave fields, the divergent background magnetic field, the space charge field, and the sheath field, and taking into account electron-electron collisions and collisions with the neutral hydrogen atoms. The EED is characterized by two electron temperatures with the population of the tail increasing for decreasing pressure. At low pressures (∼0.5 mTorr), the sheath potential is on the order of 100 V and decreases with increasing pressure. This observation suggests a pressure range for operation of reactors for diamondlike carbon film deposition.
Original language | English (US) |
---|---|
Pages (from-to) | 4197-4204 |
Number of pages | 8 |
Journal | Journal of Applied Physics |
Volume | 73 |
Issue number | 9 |
DOIs | |
State | Published - 1993 |
ASJC Scopus subject areas
- General Physics and Astronomy