TY - GEN
T1 - Morphosyntactic Tagging with Pre-trained Language Models for Arabic and its Dialects
AU - Inoue, Go
AU - Khalifa, Salam
AU - Habash, Nizar
N1 - Publisher Copyright:
© 2022 Association for Computational Linguistics.
PY - 2022
Y1 - 2022
N2 - We present state-of-the-art results on morphosyntactic tagging across different varieties of Arabic using fine-tuned pre-trained transformer language models. Our models consistently outperform existing systems in Modern Standard Arabic and all the Arabic dialects we study, achieving 2.6% absolute improvement over the previous state-of-the-art in Modern Standard Arabic, 2.8% in Gulf, 1.6% in Egyptian, and 8.3% in Levantine. We explore different training setups for fine-tuning pre-trained transformer language models, including training data size, the use of external linguistic resources, and the use of annotated data from other dialects in a low-resource scenario. Our results show that strategic fine-tuning using datasets from other high-resource dialects is beneficial for a low-resource dialect. Additionally, we show that high-quality morphological analyzers as external linguistic resources are beneficial especially in low-resource settings.
AB - We present state-of-the-art results on morphosyntactic tagging across different varieties of Arabic using fine-tuned pre-trained transformer language models. Our models consistently outperform existing systems in Modern Standard Arabic and all the Arabic dialects we study, achieving 2.6% absolute improvement over the previous state-of-the-art in Modern Standard Arabic, 2.8% in Gulf, 1.6% in Egyptian, and 8.3% in Levantine. We explore different training setups for fine-tuning pre-trained transformer language models, including training data size, the use of external linguistic resources, and the use of annotated data from other dialects in a low-resource scenario. Our results show that strategic fine-tuning using datasets from other high-resource dialects is beneficial for a low-resource dialect. Additionally, we show that high-quality morphological analyzers as external linguistic resources are beneficial especially in low-resource settings.
UR - http://www.scopus.com/inward/record.url?scp=85139147927&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85139147927&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85139147927
T3 - Proceedings of the Annual Meeting of the Association for Computational Linguistics
SP - 1708
EP - 1719
BT - ACL 2022 - 60th Annual Meeting of the Association for Computational Linguistics, Findings of ACL 2022
A2 - Muresan, Smaranda
A2 - Nakov, Preslav
A2 - Villavicencio, Aline
PB - Association for Computational Linguistics (ACL)
T2 - 60th Annual Meeting of the Association for Computational Linguistics, ACL 2022
Y2 - 22 May 2022 through 27 May 2022
ER -