TY - JOUR
T1 - Motor decisions are not black and white
T2 - selecting actions in the “gray zone”
AU - Comalli, D. M.
AU - Persand, D.
AU - Adolph, K. E.
N1 - Publisher Copyright:
© 2017, Springer-Verlag Berlin Heidelberg.
PY - 2017/6/1
Y1 - 2017/6/1
N2 - In many situations, multiple actions are possible to achieve a goal. How do people select a particular action among equally possible alternatives? In six experiments, we determined whether action selection is consistent and biased toward one decision by observing participants’ decisions to go over or under a horizontal bar set at varying heights. We assessed the height at which participants transitioned from going over to under the bar within a “gray zone”—the range of bar heights at which going over and under were both possible. In Experiment 1, participants’ transition points were consistently located near the upper boundary of the gray zone, indicating a bias to go over rather than under the bar. Moreover, transitional behaviors were clustered tightly into a small region, indicating that decisions were highly consistent. Subsequent experiments examined potential influences on action selection. In Experiment 2, participants wore ankle weights to increase the cost of going over the bar. In Experiment 3, they were tested on a padded surface that made crawling under the bar more comfortable. In Experiment 4, we introduced a secondary task that required participants to crawl immediately after navigating the bar. None of these manipulations altered participants’ decisions relative to Experiment 1. In Experiment 5, participants started in a crawling position, which led to significantly lower transition points. In Experiment 6, we tested 5- to 6-year-old children as in Experiment 1 to determine the effects of social pressure on action selection. Children displayed lower transition points, larger transition regions, and reduced ability to go over the bar compared to adults. Across experiments, results indicate that adults have a strong and robust bias for upright locomotion.
AB - In many situations, multiple actions are possible to achieve a goal. How do people select a particular action among equally possible alternatives? In six experiments, we determined whether action selection is consistent and biased toward one decision by observing participants’ decisions to go over or under a horizontal bar set at varying heights. We assessed the height at which participants transitioned from going over to under the bar within a “gray zone”—the range of bar heights at which going over and under were both possible. In Experiment 1, participants’ transition points were consistently located near the upper boundary of the gray zone, indicating a bias to go over rather than under the bar. Moreover, transitional behaviors were clustered tightly into a small region, indicating that decisions were highly consistent. Subsequent experiments examined potential influences on action selection. In Experiment 2, participants wore ankle weights to increase the cost of going over the bar. In Experiment 3, they were tested on a padded surface that made crawling under the bar more comfortable. In Experiment 4, we introduced a secondary task that required participants to crawl immediately after navigating the bar. None of these manipulations altered participants’ decisions relative to Experiment 1. In Experiment 5, participants started in a crawling position, which led to significantly lower transition points. In Experiment 6, we tested 5- to 6-year-old children as in Experiment 1 to determine the effects of social pressure on action selection. Children displayed lower transition points, larger transition regions, and reduced ability to go over the bar compared to adults. Across experiments, results indicate that adults have a strong and robust bias for upright locomotion.
KW - Action selection
KW - Affordance perception
KW - Locomotion
KW - Motor decisions
KW - Obstacles
UR - http://www.scopus.com/inward/record.url?scp=85015238394&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85015238394&partnerID=8YFLogxK
U2 - 10.1007/s00221-017-4879-6
DO - 10.1007/s00221-017-4879-6
M3 - Article
C2 - 28293691
AN - SCOPUS:85015238394
SN - 0014-4819
VL - 235
SP - 1793
EP - 1807
JO - Experimental Brain Research
JF - Experimental Brain Research
IS - 6
ER -