MPC with Sensor-Based Online Cost Adaptation

Avadesh Meduri, Huaijiang Zhu, Armand Jordana, Ludovic Righetti

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Model predictive control is a powerful tool to generate complex motions for robots. However, it often requires solving non-convex problems online to produce rich behaviors, which is computationally expensive and not always practical in real time. Additionally, direct integration of high dimensional sensor data (e.g. RGB-D images) in the feedback loop is challenging with current state-space methods. This paper aims to address both issues. It introduces a model predictive control scheme, where a neural network constantly updates the cost function of a quadratic program based on sensory inputs, aiming to minimize a general non-convex task loss without solving a non-convex problem online. By updating the cost, the robot is able to adapt to changes in the environment directly from sensor measurement without requiring a new cost design. Furthermore, since the quadratic program can be solved efficiently with hard constraints, a safe deployment on the robot is ensured. Experiments with a wide variety of reaching tasks on an industrial robot manipulator demonstrate that our method can efficiently solve complex non-convex problems with high-dimensional visual sensory inputs, while still being robust to external disturbances.

Original languageEnglish (US)
Title of host publicationProceedings - ICRA 2023
Subtitle of host publicationIEEE International Conference on Robotics and Automation
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages7
ISBN (Electronic)9798350323658
StatePublished - 2023
Event2023 IEEE International Conference on Robotics and Automation, ICRA 2023 - London, United Kingdom
Duration: May 29 2023Jun 2 2023

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729


Conference2023 IEEE International Conference on Robotics and Automation, ICRA 2023
Country/TerritoryUnited Kingdom

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Artificial Intelligence


Dive into the research topics of 'MPC with Sensor-Based Online Cost Adaptation'. Together they form a unique fingerprint.

Cite this