TY - GEN
T1 - Multi-Class H-Consistency Bounds
AU - Awasthi, Pranjal
AU - Mohri, Mehryar
AU - Mao, Anqi
AU - Zhong, Yutao
N1 - Publisher Copyright:
© 2022 Neural information processing systems foundation. All rights reserved.
PY - 2022
Y1 - 2022
N2 - We present an extensive study of H-consistency bounds for multi-class classification. These are upper bounds on the target loss estimation error of a predictor in a hypothesis set H, expressed in terms of the surrogate loss estimation error of that predictor. They are stronger and more significant guarantees than Bayes-consistency, H-calibration or H-consistency, and more informative than excess error bounds derived for H being the family of all measurable functions. We give a series of new H-consistency bounds for surrogate multi-class losses, including max losses, sum losses, and constrained losses, both in the non-adversarial and adversarial cases, and for different differentiable or convex auxiliary functions used. We also prove that no non-trivial H-consistency bound can be given in some cases. To our knowledge, these are the first H-consistency bounds proven for the multi-class setting. Our proof techniques are also novel and likely to be useful in the analysis of other such guarantees.
AB - We present an extensive study of H-consistency bounds for multi-class classification. These are upper bounds on the target loss estimation error of a predictor in a hypothesis set H, expressed in terms of the surrogate loss estimation error of that predictor. They are stronger and more significant guarantees than Bayes-consistency, H-calibration or H-consistency, and more informative than excess error bounds derived for H being the family of all measurable functions. We give a series of new H-consistency bounds for surrogate multi-class losses, including max losses, sum losses, and constrained losses, both in the non-adversarial and adversarial cases, and for different differentiable or convex auxiliary functions used. We also prove that no non-trivial H-consistency bound can be given in some cases. To our knowledge, these are the first H-consistency bounds proven for the multi-class setting. Our proof techniques are also novel and likely to be useful in the analysis of other such guarantees.
UR - http://www.scopus.com/inward/record.url?scp=85148272918&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85148272918&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85148272918
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
A2 - Koyejo, S.
A2 - Mohamed, S.
A2 - Agarwal, A.
A2 - Belgrave, D.
A2 - Cho, K.
A2 - Oh, A.
PB - Neural information processing systems foundation
T2 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
Y2 - 28 November 2022 through 9 December 2022
ER -