Abstract
Current object oriented programming languages (OOPLs) rely on mono-method dispatching. Recent research has identified multi-methods as a new, powerful feature to be added to OOPLs, and several experimental OOPLs now have multi-methods. Their ultimate success and impact in practice depends, among other things, on whether multi-method dispatching can be supported efficiently. We show that the multi-method dispatching problem can be transformed to a geometric problem on multi-dimensional integer grids, for which we then develop a data structure that uses near-linear space and has log-logarithmic query time. This gives a solution whose performance almost matches that of the best known algorithm for mono-method dispatching. Our geometric data structure has other applications as well, namely in two string matching problems: matching multiple rectangular patterns against a rectangular query text, and approximate dictionary matching with edit distance at most one. Our results for the former, long-standing open problem are substantially improved, near-linear time bounds. For the latter problem, which has applications in checking password security and the design of filtering tools, we obtain a near-linear solution as well.
Original language | English (US) |
---|---|
Pages (from-to) | 483-491 |
Number of pages | 9 |
Journal | Conference Proceedings of the Annual ACM Symposium on Theory of Computing |
State | Published - 1999 |
Event | Proceedings of the 1999 31st Annual ACM Symposium on Theory of Computing - FCRC '99 - Atlanta, GA, USA Duration: May 1 1999 → May 4 1999 |
ASJC Scopus subject areas
- Software