Multi-user Beam Alignment for Millimeter Wave Systems in Multi-path Environments

Mohammad A. Amir Khojastepour, Shahram Shahsavari, Abbas Khalili, Elza Erkip

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Directional transmission patterns (a.k.a. narrow beams) are the key to wireless communications in millimeter wave (mmWave) frequency bands which suffer from high path loss, severe shadowing, and intense blockage. In addition, the propagation channel in mmWave frequencies incorporates only a few number of spatial clusters requiring a procedure, called beam alignment (BA), to align the corresponding narrow beams with the angle of departure (AoD) of the channel clusters. In addition, BA enables beamforming gains to compensate path loss and shadowing or diversity gains to combat the blockage. Most of the prior analytical studies have considered strong simplifying assumptions such as i) having a single-user scenario and ii) having a single dominant path channel model for theoretical tractability. In this study, we relax such constraints and provide a theoretical framework to design and analyze optimized multiuser BA schemes in multi-path environments. Such BA schemes not only reduce the BA overhead and provide beamforming gains to compensate path loss and shadowing, but also provide diversity gains to mitigate the impact of blockage in practical mmWave systems.

Original languageEnglish (US)
Title of host publicationConference Record of the 54th Asilomar Conference on Signals, Systems and Computers, ACSSC 2020
EditorsMichael B. Matthews
PublisherIEEE Computer Society
Pages549-553
Number of pages5
ISBN (Electronic)9780738131269
DOIs
StatePublished - Nov 1 2020
Event54th Asilomar Conference on Signals, Systems and Computers, ACSSC 2020 - Pacific Grove, United States
Duration: Nov 1 2020Nov 5 2020

Publication series

NameConference Record - Asilomar Conference on Signals, Systems and Computers
Volume2020-November
ISSN (Print)1058-6393

Conference

Conference54th Asilomar Conference on Signals, Systems and Computers, ACSSC 2020
Country/TerritoryUnited States
CityPacific Grove
Period11/1/2011/5/20

ASJC Scopus subject areas

  • Signal Processing
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Multi-user Beam Alignment for Millimeter Wave Systems in Multi-path Environments'. Together they form a unique fingerprint.

Cite this