TY - JOUR
T1 - Multifidelity importance sampling
AU - Peherstorfer, Benjamin
AU - Cui, Tiangang
AU - Marzouk, Youssef
AU - Willcox, Karen
N1 - Funding Information:
This work was supported by the United States Department of Energy, Office of Advanced Scientific Computing Research (ASCR), Applied Mathematics Program, awards DE-FG02-08ER2585 and DE-SC0009297, as part of the DiaMonD Multifaceted Mathematics Integrated Capability Center. Some of the numerical examples were computed on the computer cluster of the Munich Centre of Advanced Computing.
Publisher Copyright:
© 2015 Elsevier B.V.
PY - 2016/3/1
Y1 - 2016/3/1
N2 - Estimating statistics of model outputs with the Monte Carlo method often requires a large number of model evaluations. This leads to long runtimes if the model is expensive to evaluate. Importance sampling is one approach that can lead to a reduction in the number of model evaluations. Importance sampling uses a biasing distribution to sample the model more efficiently, but generating such a biasing distribution can be difficult and usually also requires model evaluations. A different strategy to speed up Monte Carlo sampling is to replace the computationally expensive high-fidelity model with a computationally cheap surrogate model; however, because the surrogate model outputs are only approximations of the high-fidelity model outputs, the estimate obtained using a surrogate model is in general biased with respect to the estimate obtained using the high-fidelity model. We introduce a multifidelity importance sampling (MFIS) method, which combines evaluations of both the high-fidelity and a surrogate model. It uses a surrogate model to facilitate the construction of the biasing distribution, but relies on a small number of evaluations of the high-fidelity model to derive an unbiased estimate of the statistics of interest. We prove that the MFIS estimate is unbiased even in the absence of accuracy guarantees on the surrogate model itself. The MFIS method can be used with any type of surrogate model, such as projection-based reduced-order models and data-fit models. Furthermore, the MFIS method is applicable to black-box models, i.e., where only inputs and the corresponding outputs of the high-fidelity and the surrogate model are available but not the details of the models themselves. We demonstrate on nonlinear and time-dependent problems that our MFIS method achieves speedups of up to several orders of magnitude compared to Monte Carlo with importance sampling that uses the high-fidelity model only.
AB - Estimating statistics of model outputs with the Monte Carlo method often requires a large number of model evaluations. This leads to long runtimes if the model is expensive to evaluate. Importance sampling is one approach that can lead to a reduction in the number of model evaluations. Importance sampling uses a biasing distribution to sample the model more efficiently, but generating such a biasing distribution can be difficult and usually also requires model evaluations. A different strategy to speed up Monte Carlo sampling is to replace the computationally expensive high-fidelity model with a computationally cheap surrogate model; however, because the surrogate model outputs are only approximations of the high-fidelity model outputs, the estimate obtained using a surrogate model is in general biased with respect to the estimate obtained using the high-fidelity model. We introduce a multifidelity importance sampling (MFIS) method, which combines evaluations of both the high-fidelity and a surrogate model. It uses a surrogate model to facilitate the construction of the biasing distribution, but relies on a small number of evaluations of the high-fidelity model to derive an unbiased estimate of the statistics of interest. We prove that the MFIS estimate is unbiased even in the absence of accuracy guarantees on the surrogate model itself. The MFIS method can be used with any type of surrogate model, such as projection-based reduced-order models and data-fit models. Furthermore, the MFIS method is applicable to black-box models, i.e., where only inputs and the corresponding outputs of the high-fidelity and the surrogate model are available but not the details of the models themselves. We demonstrate on nonlinear and time-dependent problems that our MFIS method achieves speedups of up to several orders of magnitude compared to Monte Carlo with importance sampling that uses the high-fidelity model only.
KW - Importance sampling
KW - Monte Carlo method
KW - Multifidelity methods
KW - Surrogate modeling
UR - http://www.scopus.com/inward/record.url?scp=84949895033&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84949895033&partnerID=8YFLogxK
U2 - 10.1016/j.cma.2015.12.002
DO - 10.1016/j.cma.2015.12.002
M3 - Article
AN - SCOPUS:84949895033
VL - 300
SP - 490
EP - 509
JO - Computer Methods in Applied Mechanics and Engineering
JF - Computer Methods in Applied Mechanics and Engineering
SN - 0374-2830
ER -