TY - JOUR
T1 - Multiscale temporal integrators for fluctuating hydrodynamics
AU - Delong, Steven
AU - Sun, Yifei
AU - Griffith, Boyce E.
AU - Vanden-Eijnden, Eric
AU - Donev, Aleksandar
N1 - Publisher Copyright:
© 2014 American Physical Society.
PY - 2014/12/18
Y1 - 2014/12/18
N2 - Following on our previous work [S. Delong, B. E. Griffith, E. Vanden-Eijnden, and A. Donev, Phys. Rev. E 87, 033302 (2013)PLEEE81539-375510.1103/PhysRevE.87.033302], we develop temporal integrators for solving Langevin stochastic differential equations that arise in fluctuating hydrodynamics. Our simple predictor-corrector schemes add fluctuations to standard second-order deterministic solvers in a way that maintains second-order weak accuracy for linearized fluctuating hydrodynamics. We construct a general class of schemes and recommend two specific schemes: an explicit midpoint method and an implicit trapezoidal method. We also construct predictor-corrector methods for integrating the overdamped limit of systems of equations with a fast and slow variable in the limit of infinite separation of the fast and slow time scales. We propose using random finite differences to approximate some of the stochastic drift terms that arise because of the kinetic multiplicative noise in the limiting dynamics. We illustrate our integrators on two applications involving the development of giant nonequilibrium concentration fluctuations in diffusively mixing fluids. We first study the development of giant fluctuations in recent experiments performed in microgravity using an overdamped integrator. We then include the effects of gravity and find that we also need to include the effects of fluid inertia, which affects the dynamics of the concentration fluctuations greatly at small wave numbers.
AB - Following on our previous work [S. Delong, B. E. Griffith, E. Vanden-Eijnden, and A. Donev, Phys. Rev. E 87, 033302 (2013)PLEEE81539-375510.1103/PhysRevE.87.033302], we develop temporal integrators for solving Langevin stochastic differential equations that arise in fluctuating hydrodynamics. Our simple predictor-corrector schemes add fluctuations to standard second-order deterministic solvers in a way that maintains second-order weak accuracy for linearized fluctuating hydrodynamics. We construct a general class of schemes and recommend two specific schemes: an explicit midpoint method and an implicit trapezoidal method. We also construct predictor-corrector methods for integrating the overdamped limit of systems of equations with a fast and slow variable in the limit of infinite separation of the fast and slow time scales. We propose using random finite differences to approximate some of the stochastic drift terms that arise because of the kinetic multiplicative noise in the limiting dynamics. We illustrate our integrators on two applications involving the development of giant nonequilibrium concentration fluctuations in diffusively mixing fluids. We first study the development of giant fluctuations in recent experiments performed in microgravity using an overdamped integrator. We then include the effects of gravity and find that we also need to include the effects of fluid inertia, which affects the dynamics of the concentration fluctuations greatly at small wave numbers.
UR - http://www.scopus.com/inward/record.url?scp=84919476706&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84919476706&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.90.063312
DO - 10.1103/PhysRevE.90.063312
M3 - Article
AN - SCOPUS:84919476706
SN - 1539-3755
VL - 90
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 6
M1 - 063312
ER -