Multivalent peptoid conjugates which overcome enzalutamide resistance in prostate cancer cells

Yu Wang, Dilani C. Dehigaspitiya, Paul M. Levine, Adam A. Profit, Michael Haugbro, Keren Imberg-Kazdan, Susan K. Logan, Kent Kirshenbaum, Michael J. Garabedian

Research output: Contribution to journalArticlepeer-review

Abstract

Development of resistance to antiandrogens for treating advanced prostate cancer is a growing concern and extends to recently developed therapeutics, including enzalutamide. Therefore, new strategies to block androgen receptor (AR) function in prostate cancer are required. Here, we report the characterization of a multivalent conjugate presenting two bioactive ethisterone ligands arrayed as spatially defined pendant groups on a peptoid oligomer. The conjugate, named Multivalent Peptoid Conjugate 6 (MPC6), suppressed the proliferation of multiple AR-expressing prostate cancer cell lines including those that failed to respond to enzalutamide and ARN509. The structure-activity relationships of MPC6 variants were evaluated, revealing that increased spacing between ethisterone moieties and changes in peptoid topology eliminated its antiproliferative effect, suggesting that both ethisterone ligand presentation and scaffold characteristics contribute to MPC6 activity. Mechanistically, MPC6 blocked AR coactivator-peptide interaction and prevented AR intermolecular interactions. Protease sensitivity assays suggested that the MPC6-bound AR induced a receptor conformation distinct from that of dihydrotestosterone- or enzalutamide-bound AR. Pharmacologic studies revealed that MPC6 was metabolically stable and displayed a low plasma clearance rate. Notably, MPC6 treatment reduced tumor growth and decreased Ki67 and AR expression in mouse xenograft models of enzalutamide-resistant LNCaP-abl cells. Thus, MPC6 represents a new class of compounds with the potential to combat treatment-resistant prostate cancer. Cancer Res; 76(17); 5124-32.

Original languageEnglish (US)
Pages (from-to)5124-5132
Number of pages9
JournalCancer Research
Volume76
Issue number17
DOIs
StatePublished - Sep 1 2016

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Multivalent peptoid conjugates which overcome enzalutamide resistance in prostate cancer cells'. Together they form a unique fingerprint.

Cite this