TY - JOUR
T1 - Muscle activity and hypoalgesia in blood flow restricted versus unrestricted effort-matched resistance exercise in healthy adults
AU - Yang, Jinghui
AU - O'Keeffe, Rory
AU - Shirazi, Seyed Yahya
AU - Mehrdad, Sarmad
AU - Atashzar, S. Farokh
AU - Rao, Smita
N1 - Publisher Copyright:
© 2024 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.
PY - 2024/7
Y1 - 2024/7
N2 - This study assessed muscle activity (root mean square, RMS, and median frequency, MDF) to evaluate the acute response to blood flow restriction (BFR) resistance exercise (RE) and conventional moderate intensity (MI) RE. We also performed exploratory analyses of differences based on sex and exercise-induced hypoalgesia (EIH). Fourteen asymptomatic individuals performed four sets of unilateral leg press with their dominant leg to volitional fatigue under two exercise conditions: BFR RE and MI RE. Dominant side rectus femoris (RF) and vastus lateralis (VL) muscle activity were measured using surface electromyography (sEMG) through exercise. RMS and MDF were calculated and compared between conditions and timepoints using a linear mixed model. Pressure pain thresholds (PPT) were tested before and immediately after exercise and used to quantify EIH. Participants were then divided into EIH responders and nonresponders, and the differences on RMS and MDF were compared between the two groups using Hedges' g. RMS significantly increased over time (RF: p = 0.0039; VL: p = 0.001) but not between conditions (RF: p = 0.4; VL: p = 0.67). MDF decreased over time (RF: p = 0.042; VL: p < 0.001) but not between conditions (RF: p = 0.74; VL: p = 0.77). Consistently lower muscle activation was found in females compared with males (BRF, RF: g = 0.63; VL, g = 0.5. MI, RF: g = 0.72; VL: g = 1.56), with more heterogeneous findings in MDF changes. For BFR, EIH responders showed greater RMS changes (Δ RMS) (RF: g = 0.90; VL: g = 1.21) but similar MDF changes (Δ MDF) (RF: g = 0.45; VL: g = 0.28) compared to nonresponders. For MI, EIH responders demonstrated greater increase on Δ RMS (g = 0.61) and decrease on Δ MDF (g = 0.68) in RF but similar changes in VL (Δ RMS: g = 0.40; Δ MDF: g = 0.39). These results indicate that when exercising to fatigue, no statistically significant difference was observed between BFR RE and conventional MI RE in Δ RMS and Δ MDF. Lower muscle activity was noticed in females. While exercising to volitional fatigue, muscle activity may contribute to EIH.
AB - This study assessed muscle activity (root mean square, RMS, and median frequency, MDF) to evaluate the acute response to blood flow restriction (BFR) resistance exercise (RE) and conventional moderate intensity (MI) RE. We also performed exploratory analyses of differences based on sex and exercise-induced hypoalgesia (EIH). Fourteen asymptomatic individuals performed four sets of unilateral leg press with their dominant leg to volitional fatigue under two exercise conditions: BFR RE and MI RE. Dominant side rectus femoris (RF) and vastus lateralis (VL) muscle activity were measured using surface electromyography (sEMG) through exercise. RMS and MDF were calculated and compared between conditions and timepoints using a linear mixed model. Pressure pain thresholds (PPT) were tested before and immediately after exercise and used to quantify EIH. Participants were then divided into EIH responders and nonresponders, and the differences on RMS and MDF were compared between the two groups using Hedges' g. RMS significantly increased over time (RF: p = 0.0039; VL: p = 0.001) but not between conditions (RF: p = 0.4; VL: p = 0.67). MDF decreased over time (RF: p = 0.042; VL: p < 0.001) but not between conditions (RF: p = 0.74; VL: p = 0.77). Consistently lower muscle activation was found in females compared with males (BRF, RF: g = 0.63; VL, g = 0.5. MI, RF: g = 0.72; VL: g = 1.56), with more heterogeneous findings in MDF changes. For BFR, EIH responders showed greater RMS changes (Δ RMS) (RF: g = 0.90; VL: g = 1.21) but similar MDF changes (Δ MDF) (RF: g = 0.45; VL: g = 0.28) compared to nonresponders. For MI, EIH responders demonstrated greater increase on Δ RMS (g = 0.61) and decrease on Δ MDF (g = 0.68) in RF but similar changes in VL (Δ RMS: g = 0.40; Δ MDF: g = 0.39). These results indicate that when exercising to fatigue, no statistically significant difference was observed between BFR RE and conventional MI RE in Δ RMS and Δ MDF. Lower muscle activity was noticed in females. While exercising to volitional fatigue, muscle activity may contribute to EIH.
KW - blood flow restriction
KW - exercise-induced hypoalgesia
KW - resistance exercise
KW - sex
KW - surface-electromyography
UR - http://www.scopus.com/inward/record.url?scp=85199097406&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85199097406&partnerID=8YFLogxK
U2 - 10.14814/phy2.16037
DO - 10.14814/phy2.16037
M3 - Article
C2 - 39034596
AN - SCOPUS:85199097406
SN - 2051-817X
VL - 12
JO - Physiological Reports
JF - Physiological Reports
IS - 14
M1 - e16037
ER -