Nano-sensitive optical coherence tomography

Sergey A. Alexandrov, Hrebesh M. Subhash, Azhar Zam, Martin Leahy

Research output: Contribution to journalArticlepeer-review

Abstract

Depth resolved label-free detection of structural changes with nanoscale sensitivity is an outstanding problem in the biological and physical sciences and has significant applications in both the fundamental research and healthcare diagnostics arenas. Here we experimentally demonstrate a novel label-free depth resolved sensing technique based on optical coherence tomography (OCT) to detect structural changes at the nanoscale. Structural components of the 3D object, spectrally encoded in the remitted light, are transformed from the Fourier domain into each voxel of the 3D OCT image without compromising sensitivity. Spatial distribution of the nanoscale structural changes in the depth direction is visualized in just a single OCT scan. This label free approach provides new possibilities for depth resolved study of pathogenic and physiologically relevant molecules in the body with high sensitivity and specificity. It offers a powerful opportunity for early diagnosis and treatment of diseases. Experimental results show the ability of the approach to differentiate structural changes of 30 nm in nanosphere aggregates, located at different depths, from a single OCT scan, and structural changes less than 30 nm in time from two OCT scans. Application for visualization of the structure of human skin in vivo is also demonstrated. This journal is

Original languageEnglish (US)
Pages (from-to)3545-3549
Number of pages5
JournalNanoscale
Volume6
Issue number7
DOIs
StatePublished - Apr 7 2014

ASJC Scopus subject areas

  • General Materials Science

Fingerprint

Dive into the research topics of 'Nano-sensitive optical coherence tomography'. Together they form a unique fingerprint.

Cite this