TY - JOUR
T1 - Near-Infrared Fluorescent Micelles from Poly(norbornene) Brush Triblock Copolymers for Nanotheranostics
AU - Braga, Carolyne B.
AU - Pilli, Ronaldo A.
AU - Ornelas, Catia
AU - Weck, Marcus
N1 - Publisher Copyright:
© 2021 American Chemical Society.
PY - 2021/12/13
Y1 - 2021/12/13
N2 - This contribution describes the design and synthesis of multifunctional micelles based on amphiphilic brush block copolymers (BBCPs) for imaging and selective drug delivery of natural anticancer compounds. Well-defined BBCPs were synthesized via one-pot multi-step sequential grafting-through ring-opening metathesis polymerization (ROMP) of norbornene-based macroinitiators. The norbornenes employed contain a poly(ethylene glycol) methyl ether chain, an alkyl bromide chain, and/or a near-infrared (NIR) fluorescent cyanine dye. After block copolymerization, post-polymerization transformations using bromide-azide substitution, followed by the strain-promoted azide-alkyne cycloaddition (SPAAC) allowed for the functionalization of the BBCPs with the piplartine (PPT) moiety, a natural product with well-documented cytotoxicity against cancer cell lines, via an ester linker between the drug and the polymer side chain. The amphiphilic BBCPs self-assembled in aqueous media into nano-sized spherical micelles with neutral surface charges, as confirmed by dynamic light scattering analysis and transmission electron microscopy. During self-assembly, paclitaxel (PTX) could be effectively encapsulated into the hydrophobic core to form stable PTX-loaded micelles with high loading capacities and encapsulation efficiencies. The NIR fluorescent dye-containing micelles exhibited remarkable photophysical properties, excellent colloidal stability under physiological conditions, and a pH-induced disassembly under slightly acidic conditions, allowing for the release of the drug in a controlled manner. The in vitro studies demonstrated that the micelles without the drug (blank micelles) are biocompatible at concentrations of up to 1 mg mL-1 and present a high cellular internalization capacity toward MCF-7 cancer cells. The drug-functionalized micelles showed in vitro cytotoxicity comparable to free PPT and PTX against MCF-7 and PC3 cancer cells, confirming efficient drug release into the tumor environment upon cellular internalization. Furthermore, the drug-functionalized micelles exhibited higher selectivity than the pristine drugs and preferential cellular uptake in human cancer cell lines (MCF-7 and PC3) when compared to the normal breast cell line (MCF10A). This study provides an efficient strategy for the development of versatile polymeric nanosystems for drug delivery and image-guided diagnostics. Notably, the easy functionalization of BBCP side chains via SPAAC opens up the possibility for the preparation of a library of multifunctional systems containing other drugs or functionalities, such as target groups for recognition.
AB - This contribution describes the design and synthesis of multifunctional micelles based on amphiphilic brush block copolymers (BBCPs) for imaging and selective drug delivery of natural anticancer compounds. Well-defined BBCPs were synthesized via one-pot multi-step sequential grafting-through ring-opening metathesis polymerization (ROMP) of norbornene-based macroinitiators. The norbornenes employed contain a poly(ethylene glycol) methyl ether chain, an alkyl bromide chain, and/or a near-infrared (NIR) fluorescent cyanine dye. After block copolymerization, post-polymerization transformations using bromide-azide substitution, followed by the strain-promoted azide-alkyne cycloaddition (SPAAC) allowed for the functionalization of the BBCPs with the piplartine (PPT) moiety, a natural product with well-documented cytotoxicity against cancer cell lines, via an ester linker between the drug and the polymer side chain. The amphiphilic BBCPs self-assembled in aqueous media into nano-sized spherical micelles with neutral surface charges, as confirmed by dynamic light scattering analysis and transmission electron microscopy. During self-assembly, paclitaxel (PTX) could be effectively encapsulated into the hydrophobic core to form stable PTX-loaded micelles with high loading capacities and encapsulation efficiencies. The NIR fluorescent dye-containing micelles exhibited remarkable photophysical properties, excellent colloidal stability under physiological conditions, and a pH-induced disassembly under slightly acidic conditions, allowing for the release of the drug in a controlled manner. The in vitro studies demonstrated that the micelles without the drug (blank micelles) are biocompatible at concentrations of up to 1 mg mL-1 and present a high cellular internalization capacity toward MCF-7 cancer cells. The drug-functionalized micelles showed in vitro cytotoxicity comparable to free PPT and PTX against MCF-7 and PC3 cancer cells, confirming efficient drug release into the tumor environment upon cellular internalization. Furthermore, the drug-functionalized micelles exhibited higher selectivity than the pristine drugs and preferential cellular uptake in human cancer cell lines (MCF-7 and PC3) when compared to the normal breast cell line (MCF10A). This study provides an efficient strategy for the development of versatile polymeric nanosystems for drug delivery and image-guided diagnostics. Notably, the easy functionalization of BBCP side chains via SPAAC opens up the possibility for the preparation of a library of multifunctional systems containing other drugs or functionalities, such as target groups for recognition.
UR - http://www.scopus.com/inward/record.url?scp=85119895234&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85119895234&partnerID=8YFLogxK
U2 - 10.1021/acs.biomac.1c01196
DO - 10.1021/acs.biomac.1c01196
M3 - Article
C2 - 34779620
AN - SCOPUS:85119895234
SN - 1525-7797
VL - 22
SP - 5290
EP - 5306
JO - Biomacromolecules
JF - Biomacromolecules
IS - 12
ER -