Near-instant surface-selective fluorogenic protein quantification using sulfonated triarylmethane dyes and fluorogen activating proteins

Qi Yan, Brigitte F. Schmidt, Lydia A. Perkins, Matharishwan Naganbabu, Saumya Saurabh, Susan K. Andreko, Marcel P. Bruchez

Research output: Contribution to journalArticlepeer-review

Abstract

Agonist-promoted G-protein coupled receptor (GPCR) endocytosis and recycling plays an important role in many signaling events in the cell. However, the approaches that allow fast and quantitative analysis of such processes still remain limited. Here we report an improved labeling approach based on the genetic fusion of a fluorogen activating protein (FAP) to a GPCR and binding of a sulfonated analog of the malachite green (MG) fluorogen to rapidly and selectively label cell surface receptors. Fluorescence microscopy and flow cytometry demonstrate that this dye does not cross the plasma membrane, binds with high affinity to a dL5∗∗ FAP-GPCR fusion construct, activating tagged surface receptors within seconds of addition. The ability to rapidly and selectively label cell surface receptors with a fluorogenic genetically encoded tag allows quantitative imaging and analysis of highly dynamic processes like receptor endocytosis and recycling.

Original languageEnglish (US)
Pages (from-to)2078-2086
Number of pages9
JournalOrganic and Biomolecular Chemistry
Volume13
Issue number7
DOIs
StatePublished - Feb 21 2015

ASJC Scopus subject areas

  • Biochemistry
  • Physical and Theoretical Chemistry
  • Organic Chemistry

Fingerprint

Dive into the research topics of 'Near-instant surface-selective fluorogenic protein quantification using sulfonated triarylmethane dyes and fluorogen activating proteins'. Together they form a unique fingerprint.

Cite this