Network Analysis of the Multidimensional Symptom Experience of Oncology

Nikolaos Papachristou, Payam Barnaghi, Bruce Cooper, Kord M. Kober, Roma Maguire, Steven M. Paul, Marilyn Hammer, Fay Wright, Jo Armes, Eileen P. Furlong, Lisa McCann, Yvette P. Conley, Elisabeth Patiraki, Stylianos Katsaragakis, Jon D. Levine, Christine Miaskowski

Research output: Contribution to journalArticle

Abstract

Oncology patients undergoing cancer treatment experience an average of fifteen unrelieved symptoms that are highly variable in both their severity and distress. Recent advances in Network Analysis (NA) provide a novel approach to gain insights into the complex nature of co-occurring symptoms and symptom clusters and identify core symptoms. We present findings from the first study that used NA to examine the relationships among 38 common symptoms in a large sample of oncology patients undergoing chemotherapy. Using two different models of Pairwise Markov Random Fields (PMRF), we examined the nature and structure of interactions for three different dimensions of patients’ symptom experience (i.e., occurrence, severity, distress). Findings from this study provide the first direct evidence that the connections between and among symptoms differ depending on the symptom dimension used to create the network. Based on an evaluation of the centrality indices, nausea appears to be a structurally important node in all three networks. Our findings can be used to guide the development of symptom management interventions based on the identification of core symptoms and symptom clusters within a network.

Original languageEnglish (US)
Article number2258
JournalScientific reports
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2019

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Network Analysis of the Multidimensional Symptom Experience of Oncology'. Together they form a unique fingerprint.

Cite this