Neural entrainment to the beat: The “missing-pulse” phenomenon

Idan Tal, Edward W. Large, Eshed Rabinovitch, Yi Wei, Charles E. Schroeder, David Poeppel, Elana Zion Golumbic

Research output: Contribution to journalArticlepeer-review

Abstract

Most humans have a near-automatic inclination to tap, clap, or move to the beat of music. The capacity to extract a periodic beat from a complex musical segment is remarkable, as it requires abstraction from the temporal structure of the stimulus. It has been suggested that nonlinear interactions in neural networks result in cortical oscillations at the beat frequency, and that such entrained oscillations give rise to the percept of a beat or a pulse. Here we tested this neural resonance theory using MEG recordings as female and male individuals listened to 30 s sequences of complex syncopated drumbeats designed so that they contain no net energy at the pulse frequency when measured using linear analysis. We analyzed the spectrum of the neural activity while listening and compared it to the modulation spectrum of the stimuli. We found enhanced neural response in the auditory cortex at the pulse frequency. We also showed phase locking at the times of the missing pulse, even though the pulse was absent from the stimulus itself. Moreover, the strength of this pulse response correlated with individuals’ speed in finding the pulse of these stimuli, as tested in a follow-up session. These findings demonstrate that neural activity at the pulse frequency in the auditory cortex is internally generated rather than stimulus-driven. The current results are both consistent with neural resonance theory and with models based on nonlinear response of the brain to rhythmic stimuli. The results thus help narrow the search for valid models of beat perception.

Original languageEnglish (US)
Pages (from-to)6331-6341
Number of pages11
JournalJournal of Neuroscience
Volume37
Issue number26
DOIs
StatePublished - 2017

Keywords

  • Auditory rhythm
  • MEG
  • Neural resonance theory
  • Oscillations
  • Pulse

ASJC Scopus subject areas

  • General Neuroscience

Fingerprint

Dive into the research topics of 'Neural entrainment to the beat: The “missing-pulse” phenomenon'. Together they form a unique fingerprint.

Cite this