Abstract
Neural machine translation is a recently proposed approach to machine translation. Unlike the traditional statistical machine translation, the neural machine translation aims at building a single neural network that can be jointly tuned to maximize the translation performance. The models proposed recently for neural machine translation often belong to a family of encoder–decoders and encode a source sentence into a fixed-length vector from which a decoder generates a translation. In this paper, we conjecture that the use of a fixed-length vector is a bottleneck in improving the performance of this basic encoder–decoder architecture, and propose to extend this by allowing a model to automatically (soft-)search for parts of a source sentence that are relevant to predicting a target word, without having to form these parts as a hard segment explicitly. With this new approach, we achieve a translation performance comparable to the existing state-of-the-art phrase-based system on the task of English-to-French translation. Furthermore, qualitative analysis reveals that the (soft-)alignments found by the model agree well with our intuition.
Original language | English (US) |
---|---|
State | Published - Jan 1 2015 |
Event | 3rd International Conference on Learning Representations, ICLR 2015 - San Diego, United States Duration: May 7 2015 → May 9 2015 |
Conference
Conference | 3rd International Conference on Learning Representations, ICLR 2015 |
---|---|
Country/Territory | United States |
City | San Diego |
Period | 5/7/15 → 5/9/15 |
ASJC Scopus subject areas
- Education
- Computer Science Applications
- Linguistics and Language
- Language and Linguistics