TY - GEN
T1 - Neural reconstruction with approximate message passing (NeuRAMP)
AU - Fletcher, Alyson K.
AU - Rangan, Sundeep
AU - Varshney, Lav R.
AU - Bhargava, Aniruddha
PY - 2011
Y1 - 2011
N2 - Many functional descriptions of spiking neurons assume a cascade structure where inputs are passed through an initial linear filtering stage that produces a low-dimensional signal that drives subsequent nonlinear stages. This paper presents a novel and systematic parameter estimation procedure for such models and applies the method to two neural estimation problems: (i) compressed-sensing based neural mapping from multi-neuron excitation, and (ii) estimation of neural receptive fields in sensory neurons. The proposed estimation algorithm models the neurons via a graphical model and then estimates the parameters in the model using a recently-developed generalized approximate message passing (GAMP) method. The GAMP method is based on Gaussian approximations of loopy belief propagation. In the neural connectivity problem, the GAMP-based method is shown to be computational efficient, provides a more exact modeling of the sparsity, can incorporate nonlinearities in the output and significantly outperforms previous compressed-sensing methods. For the receptive field estimation, the GAMP method can also exploit inherent structured sparsity in the linear weights. The method is validated on estimation of linear nonlinear Poisson (LNP) cascade models for receptive fields of salamander retinal ganglion cells.
AB - Many functional descriptions of spiking neurons assume a cascade structure where inputs are passed through an initial linear filtering stage that produces a low-dimensional signal that drives subsequent nonlinear stages. This paper presents a novel and systematic parameter estimation procedure for such models and applies the method to two neural estimation problems: (i) compressed-sensing based neural mapping from multi-neuron excitation, and (ii) estimation of neural receptive fields in sensory neurons. The proposed estimation algorithm models the neurons via a graphical model and then estimates the parameters in the model using a recently-developed generalized approximate message passing (GAMP) method. The GAMP method is based on Gaussian approximations of loopy belief propagation. In the neural connectivity problem, the GAMP-based method is shown to be computational efficient, provides a more exact modeling of the sparsity, can incorporate nonlinearities in the output and significantly outperforms previous compressed-sensing methods. For the receptive field estimation, the GAMP method can also exploit inherent structured sparsity in the linear weights. The method is validated on estimation of linear nonlinear Poisson (LNP) cascade models for receptive fields of salamander retinal ganglion cells.
UR - http://www.scopus.com/inward/record.url?scp=85162541137&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85162541137&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85162541137
SN - 9781618395993
T3 - Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011
BT - Advances in Neural Information Processing Systems 24
PB - Neural Information Processing Systems
T2 - 25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011
Y2 - 12 December 2011 through 14 December 2011
ER -