Neural representation of subjective value under risk and ambiguity

Ifat Levy, Jason Snell, Amy J. Nelson, Aldo Rustichini, Paul W. Glimcher

Research output: Contribution to journalArticlepeer-review

Abstract

Risk and ambiguity are two conditions in which the consequences of possible outcomes are not certain. Under risk, the probabilities of different outcomes can be estimated, whereas under ambiguity, even these probabilities are not known. Although most people exhibit at least some aversion to both risk and ambiguity, the degree of these aversions is largely uncorrelated across subjects, suggesting that risk aversion and ambiguity aversion are distinct phenomena. Previous studies have shown differences in brain activations for risky and ambiguous choices and have identified neural mechanisms that may mediate transitions from conditions of ambiguity to conditions of risk. Unknown, however, is whether the value of risky and ambiguous options is necessarily represented by two distinct systems or whether a common mechanism can be identified. To answer this question, we compared the neural representation of subjective value under risk and ambiguity. fMRI was used to track brain activation while subjects made choices regarding options that varied systematically in the amount of money offered and in either the probability of obtaining that amount or the level of ambiguity around that probability. A common system, consisting of at least the striatum and the medial prefrontal cortex, was found to represent subjective value under both conditions.

Original languageEnglish (US)
Pages (from-to)1036-1047
Number of pages12
JournalJournal of neurophysiology
Volume103
Issue number2
DOIs
StatePublished - Feb 2010

ASJC Scopus subject areas

  • General Neuroscience
  • Physiology

Fingerprint

Dive into the research topics of 'Neural representation of subjective value under risk and ambiguity'. Together they form a unique fingerprint.

Cite this