Neurocomputational mechanisms underlying the subjective value of information

Ariel X.A. Goh, Daniel Bennett, Stefan Bode, Trevor T.J. Chong

Research output: Contribution to journalArticlepeer-review

Abstract

Humans have a striking desire to actively seek new information, even when it is devoid of any instrumental utility. However, the mechanisms that drive individuals’ subjective preference for information remain unclear. Here, we used fMRI to examine the processing of subjective information value, by having participants decide how much effort they were willing to trade-off for non-instrumental information. We showed that choices were best described by a model that accounted for: (1) the variability in individuals’ estimates of uncertainty, (2) their desire to reduce that uncertainty, and (3) their subjective preference for positively valenced information. Model-based analyses revealed the anterior cingulate as a key node that encodes the subjective value of information across multiple stages of decision-making – including when information was prospectively valued, and when the outcome was definitively delivered. These findings emphasise the multidimensionality of information value, and reveal the neurocomputational mechanisms underlying the variability in individuals’ desire to physically pursue informative outcomes.

Original languageEnglish (US)
Article number1346
JournalCommunications Biology
Volume4
Issue number1
DOIs
StatePublished - Dec 2021

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences

Fingerprint

Dive into the research topics of 'Neurocomputational mechanisms underlying the subjective value of information'. Together they form a unique fingerprint.

Cite this